966 resultados para Integral equations.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce and study the notion of operator hyperreflexivity of subspace lattices. This notion is a natural analogue of the operator reflexivity and is related to hyperreflexivity of subspace lattices introduced by Davidson and Harrison.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Let $(X,\mu)$ and $(Y,\nu)$ be standard measure spaces. A function $\nph\in L^\infty(X\times Y,\mu\times\nu)$ is called a (measurable) Schur multiplier if the map $S_\nph$, defined on the space of Hilbert-Schmidt operators from $L_2(X,\mu)$ to $L_2(Y,\nu)$ by multiplying their integral kernels by $\nph$, is bound-ed in the operator norm. The paper studies measurable functions $\nph$ for which $S_\nph$ is closable in the norm topology or in the weak* topology. We obtain a characterisation of w*-closable multipliers and relate the question about norm closability to the theory of operator synthesis. We also study multipliers of two special types: if $\nph$ is of Toeplitz type, that is, if $\nph(x,y)=f(x-y)$, $x,y\in G$, where $G$ is a locally compact abelian group, then the closability of $\nph$ is related to the local inclusion of $f$ in the Fourier algebra $A(G)$ of $G$. If $\nph$ is a divided difference, that is, a function of the form $(f(x)-f(y))/(x-y)$, then its closability is related to the ``operator smoothness'' of the function $f$. A number of examples of non closable, norm closable and w*-closable multipliers are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that if $11$, the operator $I+T$ attains its norm. A reflexive Banach space $X$ and a bounded rank one operator $T$ on $X$ are constructed such that $\|I+T\|>1$ and $I+T$ does not attain its norm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We prove that any bounded linear operator on $L_p[0,1]$ for $1\leq p

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical-analytical method is developed for solving surface integral equations (IEs) describing electromagnetic wave diffraction from arrays of complex-shaped planar reflectors. Solutions to these equations are regularized via analytical transformation of the separated singular part of the matrix kernel. Basis functions satisfying the metal-edge condition are determined on the entire surface of the complex region. The amplitude and phase responses of arrays consisting of polygonal reflectors are numerically investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that, if M is a subspace lattice with the property that the rank one subspace of its operator algebra is weak* dense, L is a commutative subspace lattice and P is the lattice of all projections on a separable Hilbert space, then L⊗M⊗P is reflexive. If M is moreover an atomic Boolean subspace lattice while L is any subspace lattice, we provide a concrete lattice theoretic description of L⊗M in terms of projection valued functions defined on the set of atoms of M . As a consequence, we show that the Lattice Tensor Product Formula holds for AlgM and any other reflexive operator algebra and give several further corollaries of these results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study the Riemann boundary value problem , for analytic functions in the class of analytic functions represented by the Cauchy-type integrals with density in the spaces with variable exponent. We consider both the case when the coefficient is piecewise continuous and it may be of a more general nature, admitting its oscillation. The explicit formulas for solutions in the variable exponent setting are given. The related singular integral equations in the same setting are also investigated. As an application there is derived some extension of the Szegö-Helson theorem to the case of variable exponents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is the investigation of the error which results from the method of approximate approximations applied to functions defined on compact in- tervals, only. This method, which is based on an approximate partition of unity, was introduced by V. Mazya in 1991 and has mainly been used for functions defied on the whole space up to now. For the treatment of differential equations and boundary integral equations, however, an efficient approximation procedure on compact intervals is needed. In the present paper we apply the method of approximate approximations to functions which are defined on compact intervals. In contrast to the whole space case here a truncation error has to be controlled in addition. For the resulting total error pointwise estimates and L1-estimates are given, where all the constants are determined explicitly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the Laplace equation in two dimensions using approximate approximations. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method of approximate approximations, introduced by Maz'ya [1], can also be used for the numerical solution of boundary integral equations. In this case, the matrix of the resulting algebraic system to compute an approximate source density depends only on the position of a finite number of boundary points and on the direction of the normal vector in these points (Boundary Point Method). We investigate this approach for the Stokes problem in the whole space and for the Stokes boundary value problem in a bounded convex domain G subset R^2, where the second part consists of three steps: In a first step the unknown potential density is replaced by a linear combination of exponentially decreasing basis functions concentrated near the boundary points. In a second step, integration over the boundary partial G is replaced by integration over the tangents at the boundary points such that even analytical expressions for the potential approximations can be obtained. In a third step, finally, the linear algebraic system is solved to determine an approximate density function and the resulting solution of the Stokes boundary value problem. Even not convergent the method leads to an efficient approximation of the form O(h^2) + epsilon, where epsilon can be chosen arbitrarily small.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a first order implicit time stepping procedure (Euler scheme) for the non-stationary Stokes equations in smoothly bounded domains of R3. Using energy estimates we can prove optimal convergence properties in the Sobolev spaces Hm(G) (m = 0;1;2) uniformly in time, provided that the solution of the Stokes equations has a certain degree of regularity. For the solution of the resulting Stokes resolvent boundary value problems we use a representation in form of hydrodynamical volume and boundary layer potentials, where the unknown source densities of the latter can be determined from uniquely solvable boundary integral equations’ systems. For the numerical computation of the potentials and the solution of the boundary integral equations a boundary element method of collocation type is used. Some simulations of a model problem are carried out and illustrate the efficiency of the method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Das von Maz'ya eingeführte Approximationsverfahren, die Methode der näherungsweisen Näherungen (Approximate Approximations), kann auch zur numerischen Lösung von Randintegralgleichungen verwendet werden (Randpunktmethode). In diesem Fall hängen die Komponenten der Matrix des resultierenden Gleichungssystems zur Berechnung der Näherung für die Dichte nur von der Position der Randpunkte und der Richtung der äußeren Einheitsnormalen in diesen Punkten ab. Dieses numerisches Verfahren wird am Beispiel des Dirichlet Problems für die Laplace Gleichung und die Stokes Gleichungen in einem beschränkten zweidimensionalem Gebiet untersucht. Die Randpunktmethode umfasst drei Schritte: Im ersten Schritt wird die unbekannte Dichte durch eine Linearkombination von radialen, exponentiell abklingenden Basisfunktionen approximiert. Im zweiten Schritt wird die Integration über den Rand durch die Integration über die Tangenten in Randpunkten ersetzt. Für die auftretende Näherungspotentiale können sogar analytische Ausdrücke gewonnen werden. Im dritten Schritt wird das lineare Gleichungssystem gelöst, und eine Näherung für die unbekannte Dichte und damit auch für die Lösung der Randwertaufgabe konstruiert. Die Konvergenz dieses Verfahrens wird für glatte konvexe Gebiete nachgewiesen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is the numerical treatment of a boundary value problem for the system of Stokes' equations. For this we extend the method of approximate approximations to boundary value problems. This method was introduced by V. Maz'ya in 1991 and has been used until now for the approximation of smooth functions defined on the whole space and for the approximation of volume potentials. In the present paper we develop an approximation procedure for the solution of the interior Dirichlet problem for the system of Stokes' equations in two dimensions. The procedure is based on potential theoretical considerations in connection with a boundary integral equations method and consists of three approximation steps as follows. In a first step the unknown source density in the potential representation of the solution is replaced by approximate approximations. In a second step the decay behavior of the generating functions is used to gain a suitable approximation for the potential kernel, and in a third step Nyström's method leads to a linear algebraic system for the approximate source density. For every step a convergence analysis is established and corresponding error estimates are given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de este documento es recopilar algunos resultados clasicos sobre existencia y unicidad ´ de soluciones de ecuaciones diferenciales estocasticas (EDEs) con condici ´ on final (en ingl ´ es´ Backward stochastic differential equations) con particular enfasis en el caso de coeficientes mon ´ otonos, y su cone- ´ xion con soluciones de viscosidad de sistemas de ecuaciones diferenciales parciales (EDPs) parab ´ olicas ´ y el´ıpticas semilineales de segundo orden.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The question "what Monte Carlo models can do and cannot do efficiently" is discussed for some functional spaces that define the regularity of the input data. Data classes important for practical computations are considered: classes of functions with bounded derivatives and Holder type conditions, as well as Korobov-like spaces. Theoretical performance analysis of some algorithms with unimprovable rate of convergence is given. Estimates of computational complexity of two classes of algorithms - deterministic and randomized for both problems - numerical multidimensional integration and calculation of linear functionals of the solution of a class of integral equations are presented. (c) 2007 Elsevier Inc. All rights reserved.