999 resultados para INTERNAL ALKYNES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-life structures often possess piecewise stiffness because of clearances or interference between subassemblies. Such an aspect can alter a system's fundamental free vibration response and leads to complex mode interaction. The free vibration behaviour of an L-shaped beam with a limit stop is analyzed by using the frequency response function and the incremental harmonic balance method. The presence of multiple internal resonances, which involve interactions among the first five modes and are extremely complex, have been discovered by including higher harmonics in the analysis. The results show that mode interaction may occur if the higher harmonics of a vibration mode are close to the natural frequency of a higher mode. The conditions for the existence of internal resonance are explored, and it is shown that a prerequisite is the presence of bifurcation points in the form of intersecting backbone curves. A method to compute such intersections by using only one harmonic in the free vibration solution is proposed. (C) 1996 Academic Press Limited

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A limit stop is placed at the elbow of an L-shaped beam whose linear natural frequencies are nearly commensurable. As a result of this hardening device the non-linear system exhibits multiple internal resonances, which involve various degree of coupling between the first five modes of the beam in free vibration. A point load is so placed as to excite several modes and the resulting forced vibration is examined. In the undamped case, three in-phase and two out-of-phase solution branches have been found. The resonance curve is extremely complicated, with multiple branches and interactions between the first four modes. The amplitudes of the higher harmonics are highly influenced by damping, the presence of which can effectively attenuate internal resonances. Consequently parts of the resonance curve may be eliminated, with the resulting response comprising different distinctive branches. (C) 1996 Academic Press Limited

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of variable currents on internal solitary waves is described within the context of a variable coefficient Korteweg-de Vries (KdV) equation, and the approximate slowly varying, solitary-wave solution of this equation. The general theory which leads to the variable coefficient KdV equation is described; a derivation for the special case when the solitary wave and the current are aligned in the same direction is given in the Appendix. Using further simplifications and approximations, a number of analytical expressions are obtained for the variation in the solitary wave amplitude resulting from variable shear in the basic current or from when the basic current is a depth-independent flow which is a simple representation of a geostrophic current, tidal flow or inertial wave.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for measuring the density, temperature and velocity of N2 gas flow by laser induced biacetyl phosphorescence is proposed. The characteristics of the laser induced phosphorescence of biacetyl mixed with N2 are investigated both in static gas and in one-dimensional flow along a pipe with constant cross section. The theoretical and experimental investigations show that the temperature and density of N2 gas flow could be measured by observing the phosphorescence lifetime and initial intensity of biacetyl triplet (3Au) respectively. The velocity could be measured by observing the time-of-flight of the phosphorescent gas after pulsed laser excitation. The prospect of this method is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revised 2006-06

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands m ? long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( 1000 L m ? = ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( 5 L m ? = ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The induced flow fields by internal solitary waves and its actions on cylindrical piles in density stratified ocean with a basic density profile and a basic velocity profile are investigated. Some results, such as the time evolution of flow fields and hydrodynamic forces on the piles are yielded both by theoretical analysis and numerical calculation for general and specific cases. Several kinds of ambient sea conditions of the South China Sea are specified for numerical simulation. Moreover, the effects of relative density difference, depth ratio and wave steepness on maximal total force and total torque are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morison's equation is used for estimating internal solitary wave-induced forces exerted on SPAR and semi-submersible platforms. And the results we got have also been compared to ocean surface wave loading. It is shown that Morison's equation is an appropriate approach to estimate internal wave loading even for SPAR and semi-submersible platforms, and the internal solitary wave load on floating platforms is comparable to surface wave counterpart. Moreover, the effects of the layers with different thickness on internal solitary wave force are investigated.