924 resultados para INNATE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccines have been described as weapons of mass protection. The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of, its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunotherapy of tumours using T cells expanded in vitro has met with mixed clinical success suggesting that a greater understanding of tumour/T-cell interaction is required. We used a HPV16E7 oncoprotein-based mouse tumour model to study this further. In this study, we demonstrate that a HPV16E7 tumour passes through at least three stages of immune susceptibility over time. At the earliest time point, infusion of intravenous immune cells fails to control tumour growth although the same cells given subcutaneously at the tumour site are effective. In a second stage, the tumour becomes resistant to subcutaneous infusion of cells but is now susceptible to both adjuvant activated and HPV16E7-specific immune cells transferred intravenously. In the last phase, the tumour is susceptible to intravenous transfer of HPV16E7-specific cells, but not adjuvant-activated immune cells. The requirement for IFN-gamma and perforin also changes with each stage of tumour development. Our data suggest that effective adoptive T-cell therapy of tumour will need to be matched with the stage of tumour development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization. (c) 2006 International Society for Experimental Hematology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As defined by the European Union, “ ’Nanomaterial’ (NM) means a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or agglomerate, where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm-100 nm ” (2011/696/UE). Given their peculiar physico-chemical features, nanostructured materials are largely used in many industrial fields (e.g. cosmetics, electronics, agriculture, biomedical) and their applications have astonishingly increased in the last fifteen years. Nanostructured materials are endowed with very large specific surface area that, besides making them very useful in many industrial processes, renders them very reactive towards the biological systems and, hence, potentially endowed with significant hazard for human health. For these reasons, in recent years, many studies have been focused on the identification of toxic properties of nanostructured materials, investigating, in particular, the mechanisms behind their toxic effects as well as their determinants of toxicity. This thesis investigates two types of nanostructured TiO2 materials, TiO2 nanoparticles (NP), which are yearly produced in tonnage quantities, and TiO2 nanofibres (NF), a relatively novel nanomaterial. Moreover, several preparations of MultiWalled Carbon Nanotubes (MWCNT), another nanomaterial widely present in many products, are also investigated.- Although many in vitro and in vivo studies have characterized the toxic properties of these materials, the identification of their determinants of toxicity is still incomplete. The aim of this thesis is to identify the structural determinants of toxicity, using several in vitro models. Specific fields of investigation have been a) the role of shape and the aspect ratio in the determination of biological effects of TiO2 nanofibres of different length; b) the synergistic effect of LPS and TiO2 NP on the expression of inflammatory markers and the role played therein by TLR-4; c) the role of functionalization and agglomeration in the biological effects of MWCNT. As far as biological effects elicited by TiO2 NF are concerned, the first part of the thesis demonstrates that long TiO2 nanofibres caused frustrated phagocytosis, cytotoxicity, hemolysis, oxidative stress and epithelial barrier perturbation. All these effects were mitigated by fibre shortening through ball-milling. However, short TiO2 NF exhibited enhanced ability to activate acute pro-inflammatory effects in macrophages, an effect dependent on phagocytosis. Therefore, aspect ratio reduction mitigated toxic effects, while enhanced macrophage activation, likely rendering the NF more prone to phagocytosis. These results suggest that, under in vivo conditions, short NF will be associated with acute inflammatory reaction, but will undergo a relatively rapid clearance, while long NF, although associated with a relatively smaller acute activation of innate immunity cells, are not expected to be removed efficiently and, therefore, may be associated to chronic inflammatory responses. As far as the relationship between the effects of TiO2 NP and LPS, investigated in the second part of the thesis, are concerned, TiO2 NP markedly enhanced macrophage activation by LPS through a TLR-4-dependent intracellular pathway. The adsorption of LPS onto the surface of TiO2 NP led to the formation of a specific bio-corona, suggesting that, when bound to TiO2 NP, LPS exerts a much more powerful pro-inflammatory effect. These data suggest that the inflammatory changes observed upon exposure to TiO2 NP may be due, at least in part, to their capability to bind LPS and, possibly, other TLR agonists, thus enhancing their biological activities. Finally, the last part of the thesis demonstrates that surface functionalization of MWCNT with amino or carboxylic groups mitigates the toxic effects of MWCNT in terms of macrophage activation and capability to perturb epithelial barriers. Interestingly, surface chemistry (in particular surface charge) influenced the protein adsorption onto the MWCNT surface, allowing to the formation of different protein coronae and the tendency to form agglomerates of different size. In particular functionalization a) changed the amount and the type of proteins adsorbed to MWCNT and b) enhanced the tendency of MWCNT to form large agglomerates. These data suggest that the different biological behavior of functionalized and pristine MWCNT may be due, at least in part, to the different tendency to form large agglomerates, which is significantly influenced by their different capability to interact with proteins contained in biological fluids. All together, these data demonstrate that the interaction between physico-chemical properties of nanostructured materials and the environment (cells + biological fluids) in which these materials are present is of pivotal importance for the understanding of the biological effects of NM. In particular, bio-persistence and the capability to elicit an effective inflammatory response are attributable to the interaction between NM and macrophages. However, the interaction NM-cells is heavily influenced by the formation at the nano-bio interface of specific bio-coronae that confer a novel biological identity to the nanostructured materials, setting the basis for their specific biological activities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid clearance of dying cells is a vital feature of apoptosis throughout development, tissue homeostasis and resolution of inflammation. The phagocytic removal of apoptotic cells is mediated by both professional and amateur phagocytes, armed with a series of pattern recognition receptors that participate in host defence and apoptotic cell clearance. CD14 is one such molecule. It is involved in apoptotic cell clearance (known to be immunosuppressive and anti-inflammatory) and binding of the pathogen-associated molecular pattern, lipopolysaccharides (a pro-inflammatory event). Thus CD14 is involved in the assembly of two distinct ligand-dependent macrophage responses. This project sought to characterise the involvement of the innate immune system, particularly CD14, in the removal of apoptotic cells. The role of non-myeloid CD14 was also considered and the data suggests that the expression of CD14 by phagocytes may define their professional status as phagocytes. To assess if differential CD14 ligation causes the ligand-dependent divergence in macrophage responses, a series of CD14 point mutants were used to map the binding of apoptotic cells and lipopolysaccharides. Monoclonal antibodies, 61D3 and MEM18, known to interfere with ligand-binding and responses, were also mapped. Data suggests that residue 11 of CD14, is key for the binding of 61D3 (but not MEM18), LPS and apoptotic cells, indicating lipopolysaccharides and apoptotic cells bind to similar residues. Furthermore using an NF-kB reporter, results show lipopolysaccharides but not apoptotic cells stimulate NF-kB. Taken together these data suggests ligand-dependent CD14 responses occur via a mechanism that occurs downstream of CD14 ligation but upstream of NF-?B activation. Alternatively apoptotic cell ligation of CD14 may not result in any signalling event, possibly by exclusion of TLR-4, suggesting that engulfment receptors, (e.g. TIM-4, BAI1 and Stablin-2) are required to mediate the uptake of apoptotic cells and the associated anti-inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis, programmed cell death, is used by multicellular organisms to remove cells that are in excess, damaged or diseased. Activation of the apoptosis programme generates "eat me" signals on the surface of the apoptotic cell that mediate recognition and clearance by the innate immune system. CD14, a pattern recognition receptor expressed on macrophages, is widely known for its ability to recognise the pathogen-associated molecular pattern lipopolysaccharide (LPS) and promote inflammation. However, CD14 has also been shown to mediate binding and removal of apoptotic cells in a process that is anti-inflammatory suggesting CD14 is capable of producing two distinct, ligand-dependent macrophage responses. Whilst the molecular basis for this dichotomy has yet to be defined it is clear that CD14 defines a point of interest on the macrophage surface where we may study ligand-specific responses of macrophages. Our work seeks to define the molecular mechanisms underlying the involvement of CD14 in the non-inflammatory clearance of apoptotic cells. Here we used three different differentiation strategies to generate macrophages from the monocytic cell line THP-1. The resultant macrophage models were characterised to assess the expression and function of CD14 within each model system. Whilst each macrophage model shows increased levels of surface CD14 expression, our results demonstrate significant differences in the various models’ abilities to respond to LPS and clear apoptotic cells in a CD14-dependent manner. TLR4 levels correlated positively with LPS responsiveness but not CD14-dependent apoptotic cell clearance or anti-inflammatory responses to apoptotic cells. These observations suggest CD14-dependent apoptotic cell clearance is not dependent on TLR4. Taken together our data support the notion that the CD14 ligand-dependent responses to LPS and apoptotic cells derive from changes at the macrophage surface. The nature and composition of the CD14-co-receptor complex for LPS and apoptotic cell binding and responses is the subject of further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid elimination of cells undergoing programmed cell death (apoptosis) is vital to maintain tissue homeostasis. The phagocytic removal of apoptotic cells (AC) is mediated by innate immune molecules, professional phagocytes and amateur phagocytes that recognise "eat me" signals on the surface of the AC. CD14, a pattern recognition receptor expressed on macrophages, is widely known for its ability to recognise the pathogen-associated molecular pattern lipopolysaccharide (LPS) and promote inflammation. CD14 also mediates the binding and removal of AC, a process that is considered to be anti-inflammatory therefore suggesting CD14 is capable of producing two distinct ligand-dependent responses. Our work seeks to define the molecular mechanisms underlying the involvement of CD14 in the non-inflammatory clearance of AC. Here we describe three different differentiation strategies used to generate macrophages from the monocytic cell line THP-1. Whilst CD14 expression was increased in each macrophage model we demonstrate significant differences in the various macrophage models' abilities to respond to LPS and clear AC. We show that CD14 expression correlates with CD14-dependent AC clearance and anti-inflammatory responses to AC. However LPS responsiveness correlates, as expected, with TLR4 but not CD14 expression. These observations suggest CD14-dependent AC clearance is not dependent on TLR4. Taken together our data support the notion that CD14 ligand-dependent responses to LPS and AC are derived from changes at the macrophage surface. The nature and composition of the CD14-co-receptor complex for LPS and AC binding and consequent responses is the subject of further study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) continues to be one of the top causes of mortality in the world. World Heart Organization (WHO) reported that in 2004, CVD contributed to almost 30% of death from estimated worldwide death figures of 58 million[1]. Heart failure treatment varies from lifestyle adjustment to heart transplantation; its aims are to reduce HF symptoms, prolong patient survival and minimize risk [2]. One alternative available in the market for HF treatment is Left Ventricular Assist Device (LVAD). Chronic Intermittent Mechanical Support (CIMS) device is a novel (LVAD) heart failure treatment using counterpulsation similar to Intra Aortic Balloon Pumps (IABP). However, the implantation site of the CIMS balloon is in the ascending aorta just distal to aortic valve contrasted with IABP in the descending aorta. Counterpulsation coupled with implantation close to the aortic valve enables comparable flow augmentation with reduced balloon volume. Two prototypes of the CIMS balloon were constructed using rapid prototyping: the straight-body model is a cylindrical tube with a silicone membrane lining with zero expansive compliance. The compliant-body model had a bulging structure that allowed the membrane to expand under native systolic pressure increasing the device’s static compliance to 1.5 mL/mmHg. This study examined the effect of device compliance and vascular compliance on counterpulsating flow augmentation. Both prototypes were tested on a two-element Windkessel model human mock circulatory loop (MCL). The devices were placed just distal to aortic valve and left coronary artery. The MCL mimicked HF with cardiac output of 3 L/min, left ventricular pressure of 85/15 mmHg, aortic pressure of 70/50 mmHg and left coronary artery flow rate of 66 mL/min. The mean arterial pressure (MAP) was calculated to be 57 mmHg. Arterial compliance was set to be1.25 mL/mmHg and 2.5 mL/mmHg. Inflation of the balloon was triggered at the dicrotic notch while deflation was at minimum aortic pressure prior to systole. Important haemodynamics parameters such as left ventricular pressure (LVP), aortic pressure (AoP), cardiac output (CO), left coronary artery flowrate (QcorMean), and dP (Peak aortic diastolic augmentation pressure – AoPmax ) were simultaneously recorded for both non-assisted mode and assisted mode. ANOVA was used to analyse the effect of both factors (balloon and arterial compliance) to flow augmentation. The results showed that for cardiac output and left coronary artery flowrate, there were significant difference between balloon and arterial compliance at p < 0.001. Cardiac output recorded maximum output at 18% for compliant body and stiff arterial compliance. Left coronary artery flowrate also recorded around 20% increase due to compliant body and stiffer arterial compliance. Resistance to blood ejection recorded highest difference for combination of straight body and stiffer arterial compliance. From these results it is clear that both balloon and arterial compliance are statistically significant factors for flow augmentation on peripheral artery and reduction of resistance. Although the result for resistance reduction was different from flow augmentation, these results serves as an important aspect which will influence the future design of the CIMS balloon and its control strategy. References: 1. Mathers C, Boerma T, Fat DM. The Global Burden of disease:2004 update. Geneva: World Heatlh Organization; 2008. 2. Jessup M, Brozena S. Heart Failure. N Engl J Med 2003;348:2007-18.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removal of unwanted, effete, or damaged cells through apoptosis, an active cell death culminating in phagocytic removal of cell corpses, is an important process throughout the immune system in development, control, and homeostasis. For example, neutrophil apoptosis is central to the resolution of acute inflammation, whereas autoreactive and virus-infected cells are similarly deleted. The AC removal process functions not only to remove cell corpses but further, to control inappropriate immune responses so that ACs are removed in an anti-inflammatory manner. Such "silent" clearance is mediated by the innate immune system via polarized monocyte/macrophage populations that use a range of PRRs and soluble molecules to promote binding and phagocytosis of ACs. Additionally, attractive signals are released from dying cells to recruit phagocytes to sites of death. Here, we review the molecular mechanisms associated with innate immune removal of and responses to ACs and outline how these may impact on tissue homeostasis and age-associated pathology (e.g., cardiovascular disease). Furthermore, we discuss how an aging innate immune system may contribute to the inflammatory consequences of aging and why the study of an aging immune system may be a useful path to advance characterization of mechanisms mediating effective AC clearance. © Society for Leukocyte Biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gram-positive bacterial cell wall components including PGN (peptidoglycan) elicit a potent pro-inflammatory response in diverse cell types, including endothelial cells, by activating TLR2 (Toll-like receptor 2) signalling. The functional integrity of the endothelium is under the influence of a network of gap junction intercellular communication channels composed of Cxs (connexins) that also form hemichannels, signalling conduits that are implicated in ATP release and purinergic signalling. PGN modulates Cx expression in a variety of cell types, yet effects in endothelial cells remain unresolved. Using the endothelial cell line b.End5, a 6 h challenge with PGN induced IL-6 (interleukin 6), TLR2 and Cx43 mRNA expression that was associated with enhanced Cx43 protein expression and gap junction coupling. Cx43 hemichannel activity, measured by ATP release from the cells, was induced following 15 min of exposure to PGN. Inhibition of hemichannel activity with carbenoxolone or apyrase prevented induction of IL-6 and TLR2 mRNA expression by PGN, but had no effect on Cx43 mRNA expression levels. In contrast, knockdown of TLR2 expression had no effect on PGN-induced hemichannel activity, but reduced the level of TLR2 and Cx43 mRNA expression following 6 h of PGN challenge. PGN also acutely induced hemichannel activity in HeLa cells transfected to express Cx43, but had no effect in Cx43-deficient HeLa OHIO cells. All ATP responses were blocked with Cx-specific channel blockers. We conclude that acute Cx43 hemichannel signalling plays a role in the initiation of early innate immune responses in the endothelium.