980 resultados para INFINITE-DIMENSIONAL MANIFOLDS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bénard–Marangoni convection is studied in a three-dimensional container with thermally insulated lateral walls and prescribed heat flux at lower boundary. The upper surface of the incompressible, viscous fluid is assumed to be flat with temperature dependent surface tension. A Galerkin–Tau method with odd and even trial functions satisfying all the essential boundary conditions except the natural boundary conditions at the free surface has been used to solve the problem. The critical Marangoni and Rayleigh numbers are determined for the onset of steady convection as a function of aspect ratios x0 and y0 for the cases of Bénard–Marangoni, pure Marangoni and pure Bénard convections. It is observed that critical parameters are decreasing with an increase in aspect ratios. The flow structures corresponding to the values of the critical parameters are presented in all the cases. It is observed that the critical parameters are higher for case with heat flux prescribed than those corresponding to the case with prescribed temperature. The critical Marangoni number for pure Marangoni convection is higher than critical Rayleigh number corresponding to pure Bénard convection for a given aspect ratio whereas the reverse was observed for two-dimensional infinite layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of large mass injection on the following three-dimensional laminar compressible boundary-layer flows is investigated by employing the method of matched asymptotic expansions: (i) swirling flow in a laminar compressible boundary layer over an axisymmetric surface with variable cross-section and (ii) laminar compressible boundary-layer flow over a yawed infinite wing in a hypersonic flow. The resulting equations are solved numerically by combining the finite-difference technique with quasi-linearization. An increase in the swirl parameter, the yaw angle or the wall temperature is found to be capable of bringing the viscous layer nearer the surface and reducing the effects of massive blowing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A flexible robot arm can be modeled as an Euler-Bernoulli beam which are infinite degrees of freedom (DOF) system. Proper control is needed to track the desired motion of a robotic arm. The infinite number of DOF of beams are reduced to finite number for controller implementation, which brings in error (due to their distributed nature). Therefore, to represent reality better distributed parameter systems (DPS) should be controlled using the systems partial differential equation (PDE) directly. In this paper, we propose to use a recently developed optimal dynamic inversion technique to design a controller to suppress nonlinear vibration of a beam. The method used in this paper determines control forces directly from the PDE model of the system. The formulation has better practical significance, because it leads to a closed form solution of the controller (hence avoids computational issues).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding vertex-minimal triangulations of closed manifolds is a very difficult problem. Except for spheres and two series of manifolds, vertex-minimal triangulations are known for only few manifolds of dimension more than 2 (see the table given at the end of Section 5). In this article, we present a brief survey on the works done in last 30 years on the following:(i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers n and d, construction of n-vertex triangulations of different d-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices.In Section 1, we have given all the definitions which are required for the remaining part of this article. A reader can start from Section 2 and come back to Section 1 as and when required. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3,we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there. We have also presented some open problems/conjectures in Sections 3 and 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop the formalism of quantum mechanics on three-dimensional fuzzy space and solve the Schrodinger equation for the free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high energy cut-off is found for the free particle spectrum, which also results in the modification of the high energy dispersion relation. An ultra-violet/infra-red duality is manifest in the free particle spectrum. The finite well also has an upper bound on the possible energy eigenvalues. The phase shifts due to scattering around the finite fuzzy potential well are calculated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anderson localization is known to be inevitable in one-dimension for generic disordered models. Since localization leads to Poissonian energy level statistics, we ask if localized systems possess `additional' integrals of motion as well, so as to enhance the analogy with quantum integrable systems. We answer this in the affirmative in the present work. We construct a set of nontrivial integrals of motion for Anderson localized models, in terms of the original creation and annihilation operators. These are found as a power series in the hopping parameter. The recently found Type-1 Hamiltonians, which are known to be quantum integrable in a precise sense, motivate our construction. We note that these models can be viewed as disordered electron models with infinite-range hopping, where a similar series truncates at the linear order. We show that despite the infinite range hopping, all states but one are localized. We also study the conservation laws for the disorder free Aubry-Andre model, where the states are either localized or extended, depending on the strength of a coupling constant. We formulate a specific procedure for averaging over disorder, in order to examine the convergence of the power series. Using this procedure in the Aubry-Andre model, we show that integrals of motion given by our construction are well-defined in localized phase, but not so in the extended phase. Finally, we also obtain the integrals of motion for a model with interactions to lowest order in the interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An accurate method which directly accounts for the interactions between different microcracks is used for analyzing the elastic problem of multiple cracks solids. The effective elastic moduli for randomly oriented cracks and parallel cracks are evaluated for the representative volume element (RVE) with microcracks in infinite media. The numerical results are compared with those from various micromechanics models and experimental data. These results show that the present method is simple and provides a direct and efficient approach to dealing with elastic solids containing multiple cracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An embedded cell model is presented to obtain the effective elastic moduli and the elastic-plastic stress-strain relations of three-dimensional two-phase particulate composites. Each cell consists of an ellipsoidal inclusion surrounded by a finite ellipsoidal matrix that embedded in an infinite matrix. When both matrix and particle are elastic, the effective elastic moduli are derived which is an exact analytic formula without any simplified approximation that can be expressed in an explicit form. Further, the elastic-plastic stress-strain relations are obtained for spherical cells and oblate spheroid cells, in which the matrix is elastic and the particle is elastic-plastic. In addition, the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC) is investigated by a systematic approach [1] in which the matrix is elastic-plastic and the particle is elastic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three-dimensional transient wave response problem is presented for an infinite elastic medium weakened by a plane crack of infinite length and finite width. Tractions are applied suddenly to the crack, which simulates the case of impact loading. The integral transforms are utilized to reduce the problem to a standard Fredholm integral equation in the Laplace transform variable and sequentially invert the Laplace transforms of the stress components by numerical inversion method. The dynamic mode I stress intensity factors at the crack tip are obtained and some numerical results are presented in graphical form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the basis of previous works, the strange attractor in real physical systems is discussed. Louwerier attractor is used as an example to illustrate the geometric structure and dynamical properties of strange attractor. Then the strange attractor of a kind of two-dimensional map is analysed. Based on some conditions, it is proved that the closure of the unstable manifolds of hyberbolic fixed point of map is a strange attractor in real physical systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let L be the algebra of all linear transformations on an n-dimensional vector space V over a field F and let A, B, ƐL. Let Ai+1 = AiB - BAi, i = 0, 1, 2,…, with A = Ao. Let fk (A, B; σ) = A2K+1 - σ1A2K-1 + σ2A2K-3 -… +(-1)KσKA1 where σ = (σ1, σ2,…, σK), σi belong to F and K = k(k-1)/2. Taussky and Wielandt [Proc. Amer. Math. Soc., 13(1962), 732-735] showed that fn(A, B; σ) = 0 if σi is the ith elementary symmetric function of (β4- βs)2, 1 ≤ r ˂ s ≤ n, i = 1, 2, …, N, with N = n(n-1)/2, where β4 are the characteristic roots of B. In this thesis we discuss relations involving fk(X, Y; σ) where X, Y Ɛ L and 1 ≤ k ˂ n. We show: 1. If F is infinite and if for each X Ɛ L there exists σ so that fk(A, X; σ) = 0 where 1 ≤ k ˂ n, then A is a scalar transformation. 2. If F is algebraically closed, a necessary and sufficient condition that there exists a basis of V with respect to which the matrices of A and B are both in block upper triangular form, where the blocks on the diagonals are either one- or two-dimensional, is that certain products X1, X2…Xr belong to the radical of the algebra generated by A and B over F, where Xi has the form f2(A, P(A,B); σ), for all polynomials P(x, y). We partially generalize this to the case where the blocks have dimensions ≤ k. 3. If A and B generate L, if the characteristic of F does not divide n and if there exists σ so that fk(A, B; σ) = 0, for some k with 1 ≤ k ˂ n, then the characteristic roots of B belong to the splitting field of gk(w; σ) = w2K+1 - σ1w2K-1 + σ2w2K-3 - …. +(-1)K σKw over F. We use this result to prove a theorem involving a generalized form of property L [cf. Motzkin and Taussky, Trans. Amer. Math. Soc., 73(1952), 108-114]. 4. Also we give mild generalizations of results of McCoy [Amer. Math. Soc. Bull., 42(1936), 592-600] and Drazin [Proc. London Math. Soc., 1(1951), 222-231].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I

Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.

The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.

Part II

A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.

The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.

Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.