866 resultados para INDEPENDENT COMPONENT ANALYSIS (ICA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Independent Components Analysis is a Blind Source Separation method that aims to find the pure source signals mixed together in unknown proportions in the observed signals under study. It does this by searching for factors which are mutually statistically independent. It can thus be classified among the latent-variable based methods. Like other methods based on latent variables, a careful investigation has to be carried out to find out which factors are significant and which are not. Therefore, it is important to dispose of a validation procedure to decide on the optimal number of independent components to include in the final model. This can be made complicated by the fact that two consecutive models may differ in the order and signs of similarly-indexed ICs. As well, the structure of the extracted sources can change as a function of the number of factors calculated. Two methods for determining the optimal number of ICs are proposed in this article and applied to simulated and real datasets to demonstrate their performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FBGs are excellent strain sensors, because of its low size and multiplexing capability. Tens to hundred of sensors may be embedded into a structure, as it has already been demonstrated. Nevertheless, they only afford strain measurements at local points, so unless the damage affects the strain readings in a distinguishable manner, damage will go undetected. This paper show the experimental results obtained on the wing of a UAV, instrumented with 32 FBGs, before and after small damages were introduced. The PCA algorithm was able to distinguish the damage cases, even for small cracks. Principal Component Analysis (PCA) is a technique of multivariable analysis to reduce a complex data set to a lower dimension and reveal some hidden patterns that underlie.