928 resultados para IMMUNOLOGICAL-TOLERANCE
Resumo:
The SV channel encoded by the TPC1 gene represents a Ca(2+)- and voltage-dependent vacuolar cation channel. Point mutation D454N within TPC1, named fou2 for fatty acid oxygenation upregulated 2, results in increased synthesis of the stress hormone jasmonate. As wounding causes Ca2+ signals and cytosolic Ca2+ is required for SV channel function, we here studied the Ca(2+)-dependent properties of this major vacuolar cation channel with Arabidopsis thaliana mesophyll vacuoles. In patch clamp measurements, wild-type and fou2 SV channels did not exhibit differences in cytosolic Ca2+ sensitivity and Ca2+ impermeability. K+ fluxes through wild-type TPC1 were reduced or even completely faded away when vacuolar Ca2+ reached the 0.1-mm level. The fou2 protein under these conditions, however, remained active. Thus, D454N seems to be part of a luminal Ca2+ recognition site. Thereby the SV channel mutant gains tolerance towards elevated luminal Ca2+. A three-fold higher vacuolar Ca/K ratio in the fou2 mutant relative to wild-type plants seems to indicate that fou2 can accumulate higher levels of vacuolar Ca(2+) before SV channel activity vanishes and K(+) homeostasis is impaired. In response to wounding fou2 plants might thus elicit strong vacuole-derived cytosolic Ca2+ signals resulting in overproduction of jasmonate.
Resumo:
This research investigated the pattern of antibody response by means of enzyme linked immunosorbent assay (Elisa) and indirect fluorescent antibody test (IFAT) through the course of experimental Trypanosoma evansi infection in dogs. Clinical and parasitological features were also studied. The average prepatent period was 11.2 days and parasitaemia showed an undulating course. Biometrical study of parasites revealed a mean total length of 21.68mm. The disease was characterized by intermittent fever closely related to the degree of parasitaemia and main clinical signs consisted of pallor of mucous membrane, edema, progressive emaciation and enlargement of palpable lymph nodes. Diagnostic antibody was detected within 12 to 15 days and 15 to 19 days of infection by IFAT and Elisa, respectively. High and persistent antibody levels were detected by both tests and appeared not to correlate with control of parasitaemia
Resumo:
Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.
Resumo:
Human immunodeficiency virus (HIV) infection heavily compromises the immune system. The decrease of the T cell CD4+ subset along the evolution to acquired immunodeficiency syndrome has been considered as a hallmark of HIV infection. In this paper we review some aspects of the immunopathology of HIV infection and discuss the importance of the flow cytometry for the evaluation of the T lymphocyte subsets in the follow-up of HIV infected children and adults, and for the monitoring of the immune reconstitution upon antiretroviral therapy.
Resumo:
Engagement of the T cell receptor leads to the accumulation of filamentous actin, which is necessary for the formation of the immunological synapse and subsequent T cell activation. In the December issue of Molecular Cell, Sasahara et al. provide new insights into the link between the T cell receptor and actin assembly in the immunological synapse, and reveal a critical regulatory role for PKC theta in this process.
Resumo:
In this study, we evaluated the immune response of patients suffering from cutaneous leishmaniasis treated with two distinct protocols. One group was treated with conventional chemotherapy using pentavalent antimonium salts and the other with immunochemotherapy where a vaccine against cutaneous leishmaniasis was combined with the antimonium salt. Our results show that, although no differences were observed in the necessary time for complete healing of the lesions between the two treatments, peripheral blood mononuclear cells from patients treated by chemotherapy showed smaller lymphoproliferative responses at the end of the treatment than those from patients in the immunochemotherapy group. Furthermore, IFN-gamma production was also different between the two groups. While cells from patients in the chemotherapy group produced more IFN-gamma at the end of treatment, a significant decrease in this cytokine production was associated with healing in the immunochemotherapy group. In addition, IL-10 production was also less intense in this latter group. Finally, an increase in CD8+ -IFN-gamma producing cells was detected in the chemotherapy group. Together these results point to an alternative treatment protocol where healing can be induced with a decreased production of a potentially toxic cytokine.
Resumo:
ABSTRACT Malaria is a major worldwide public health problem, with transmission occurring throughout Africa, Asia, Oceania and Latin America. Over two billion people live in malarious areas of the world and it is estimated that 300-500 million cases and 1.5-2.7 million deaths occur annually. The increase in multi-drug resistant parasites and insecticide-resistant vectors has made the development of malaria vaccine a public health priority. The published genome offers tremendous opportunity for the identification of new antigens that can befast-tracked for vaccine development. We identified potential protein antigens present on the surface of asexual malaria blood stages through bioinformatics and published transcriptome and proteorné analysis. Amongst the proteins identified, we selected those that contain predicted a-helical coiled-coil regions, which are generally short and structurally stable as isolated fragments. Peptides were synthesized and used to immunize mice. Most peptides tested were immunogenic as demonstrated in ELISA assays, and induced antibodies of varying titres. In immunofluorescence assays, anti-sera from immunized mice reacted with native proteins expressed at different intraerythrocytic developmental stages of the parasite's cycle. In parallel in vitro ADCI functional studies, human antibodies affinity purified on some of these peptides inhibited parasite growth in association with monocytes in magnitudes similar to that seen in semiimmune African adults. Siudies using human immune sera taken from different malaria endemic regions, demonstrated that majority of peptides were recognized at high prevalence. 73 peptides were next tested in longitudinal studies in two cohorts separated in space and time in coastal Kenya. In these longitudinal analyses, antibody responses to peptides were sequentially examined in two cohorts of children at risk of clinical malaria in order to characterize the level of peptide recognition by age, and the role of anti-peptide antibodies in protection from clinical malaria. Ten peptides were associated ?with a significantly reduced odds ratio for an episode of clinical malaria in the first cohort of children and two of these peptides (LR146 and ÁS202.11) were associated with a significantly reduced odds ratio in both cohorts. This study has identified proteins PFB0145c and MAL6P1.37 among others as likely targets of protective antibodies. Our findings support further studies to systematically assess immunogenicity of peptides of interest in order to establish clear criteria for optimal design of potential vaccine constructs to be tested in clinical trials. RESUME La malaria est un problème de santé publique mondial principalement en Afrique, en Asie, en Océanie et en Amérique latine. Plus de 2 milliards de personnes vivent dans des régions endémiques et le nombre de cas par année est estimé entre 300 et 500 millions. 1.5 à 2.7 millions de décès surviennent annuellement dans ces zones. L'augmentation de la résistance aux médicaments et aux insecticides fait du développement d'un vaccin une priorité. Le séquençage complet du génome du parasite offre l'opportunité d'identifier de nouveaux antigènes qui peuvent rapidement mener au développement d'un vaccin. Des protéines antigéniques potentielles présentes à la surface des globules rouges infectés ont été identifiées par bioinformatique et par l'analyse du protéome et du transcriptome. Nous avons sélectionné, parmi ces protéines, celles contenant des motifs dits "a helical coiled-coil" qui sont généralement courts et structurellement stables. Ces régions ont été obtenues par synthèse peptidique et utilisées pour immuniser des souris. La plupart des peptides testés sont immunogéniques et induisent un titre variable d'anticorps déterminé par ELISA. Les résultats de tests d'immunofluorescence indiquent que les sera produits chez la souris reconnaissent les protéines natives exprimées aux différents stades de développement du parasite. En parallèle, des études d'ADCI in vitro montrent qué des anticorps humains purifiés à partir de ces peptides associés à des monocytes inhibent la croissance du parasite aussi bien que celle observée chez des adultes africains protégés. Des études d'antigénicité utilisant des sera de personnes protégées de différents âges vivant dans des régions endémiques montrent que la majorité des peptides sont reconnus avec une haute prévalence. 73 peptides ont été testés dans une étude longitudinale avec 2 cohortes de la côte du Kenya. Ces 2 groupes viennent de zones bien distinctes et les prélèvements n'ont pas été effectués pendant la même période. Dans cette étude, la réponse anticorps contre les peptides synthétiques a été testée dans les 2 cohortes d'enfants à risque de développer un épisode de malaria afin de caractériser le niveau de reconnaissance des peptides en fonction de l'âge et de déterminer le rôle des anticorps anti-peptides dans la protection contre la malaria. Parmi ces peptides, 10 sont associés à une réduction significative des risques de développer un épisode de malaria dans la première cohorte alors qu'un seul (LR146 et AS202.11) l'est dans les 2 cohortes. Cette étude a identifié, parmi d'autres, les protéines PFB0145c et MAL6P1.37 comme pouvant être la cible d'anticorps. Ces résultats sont en faveur de futures études qui évalueraient systématiquement l'immunogénicité des peptides d'intérêt dans le but d'établir des critères de sélection clairs pour le développement d'un vaccin. Résumé pour un large public La malaria est un problème de santé publique mondial principalement en Afrique, en Asie, en Océanie et en Amérique latine. Plus de 2 milliards de personnes vivent dans des régions endémiques et le nombre de cas par année est estimé entre 300 et 500 millions. 1.5 à 2.7 millions de décès surviennent annuellement dans ces zones. La résistance aux médicaments et aux insecticides augmente de plus en plus d'où la nécessité de développer un vaccin. Le séquençage complet du génome (ensemble des gènes) de P. falciparum a conduit au développement de nouvelles .études à large échelle dans le domaine des protéines du parasite (protéome) ; dans l'utilisation d'algorithmes, de techniques informatiques et statistiques pour l'analyse de données biologiques (bioinformatique) et dans les technologies de transcription et de profiles d'expression (transcriptome). Nous avons identifié, en utilisant les outils ci-dessus, des nouvelles protéines antigéniques qui sont présentes au stade sanguin de la malaria. Nous avons sélectionné, parmi ces protéines, celles contenant un motif dit "a-helical coiled-coil" qui sont des domaines impliqués dans un large éventail de fonctions biologiques. Des peptides représentant ces régions structurellement stables ont été synthétisés et utilisés pour immuniser des souris. La plupart des peptides testés sont immunogéniques et induisent un titre variable d'anticorps déterminé par ELISA. Les résultats de tests d'immunofluorescence indiquent que plusieurs sera de souris immunisées avec ces peptides reconnaissent les protéines natives exprimées à la surface des globules rouges infectés. En parallèle, des études d'ADCI in vitro montrent que des anticorps humains purifiés à partir de ces peptides en présence de monocytes inhibent la croissance du parasite de manière similaire à celle observée chez des adultes africains protégés. Des études d'antigénicité utilisant des sera de personnes immunes de différents âges (adultes et enfants) vivant dans des régions endémiques montrent que la majorité des peptides sont reconnus avec une haute prévalence. 73 peptides ont été testés dans des études épidémiologiques dans 2 villages côtiers du Kenya Ces 2 groupes vivent dans des zones bien distinctes et les prélèvements n'ont pas été effectués pendant la même période. Dans ces études, la réponse anticorps dirigée contre les peptides synthétiques a été testée en utilisant 467 échantillons sanguins d'enfants à risque de développer un épisode de malaria afin de caractériser le niveau de reconnaissance des peptides en fonction de l'âge et de déterminer le rôle des anticorps anti-peptides dans la protection contre la malaria cérébrale. Parmi ces peptides, 10 sont associés à une protection contre un épisode de malaria dans le premier village alors qu'un seul l'est dans les 2 villages. Ces résultats sont en faveur de futures études qui évalueraient systématiquement l'immunogénicité des peptides intéressants dans le but d'établir des critères de sélection clairs pour le développement d'un vaccin.
Resumo:
Hydatid disease is caused by Echinococcus granulosus. In this study, we aimed to investigate the benefit of monitoring cases with hydatid cyst by means of immune components in patients in a long-term follow-up after surgery. Eighty-four preoperative and postoperative serum samples from 14 cases undergoing surgery for hydatid disease were evaluated in terms of immune parameters, such as total and specific IgE, IgG, IgM, IgA and complement. Total and specific IgE were determined by ELISA. Specific IgG levels were measured by indirect hemaglutination.Total IgG, IgM, IgA and complement (C3 and C4) were detected by nephelometry. Imaging studies were also carried out during the follow-up. In none of the patients hydatid cysts were detected during the follow-up. Total IgE levels in the sera of the patients decreased to normal six months after surgery. Although specific IgE against echinococcal antigens decreased one year after operation, levels were still significantly high. There were no changes in the levels of anti-Echinococcus IgG and total IgG in follow-up period. Additionally, other parameters, such as IgA, IgM, C3 and C4, were not affected.
Resumo:
Sixty-five patients were diagnosed with visceral leishmaniasis (VL) on Margarita Island in the decade from 1990 to1999; 86.2% were <= 3 years old. All were leishmanin-negative at diagnosis. Evaluation of 23 cured patients in 1999 revealed that 22/23 had converted to leishmanin-positive; five had persisting antibodies to rK39 antigen, with no clinical evidence of disease. Leishmanin tests were positive in 20.2% of 1,643 healthy individuals from 417 households in endemic areas. Of the positive reactors, 39.8% were identified in 35 (8.4%) of the households, 15 of which had an antecedent case of VL, a serologically positive dog or both. Weak serological activity to rK39 antigen was detected in 3 of 488 human sera from the endemic areas. The presence of micro-foci of intense peri-urban transmission and the apparent absence of other Trypanosomatidae causing human disease offer a unique opportunity for the study of reservoirs, alternative vectors and evaluation of control measures on the Island.
Resumo:
The protein profiles of the New Guinea "C" dengue virus type 2 (DENV-2)prototype and those of a Brazilian DENV-2 isolated in the State of Rio de Janeiro in 1995 were compared. SDS-PAGE analysis showed that the virus from Rio de Janeiro expresses NS5 (93.0 kDa), NS3 (66.8 kDa) E (62.4 kDa) and NS1 (41.2 kDa) proteins differently from the New Guinea "C" virus. The immunoblot revealed specificity and antigenicity for the NS3 protein from DENV-2 Rio de Janeiro mainly in primary infections, convalescent cases, and in secondary infections in both cases and only antigenicity for E and NS1 proteins for both viruses in primary and secondary infections.
Resumo:
The amino acid cysteine has long been known to be toxic at elevated levels for bacteria, fungi, and humans. However, mechanisms of cysteine tolerance in microbes remain largely obscure. Here we show that the human pathogenic yeast Candida albicans excretes sulfite when confronted with increasing cysteine concentrations. Mutant construction and phenotypic analysis revealed that sulfite formation from cysteine in C. albicans relies on cysteine dioxygenase Cdg1, an enzyme with similar functions in humans. Environmental cysteine induced not only the expression of the CDG1 gene in C. albicans, but also the expression of SSU1, encoding a putative sulfite efflux pump. Accordingly, the deletion of SSU1 resulted in enhanced sensitivity of the fungal cells to both cysteine and sulfite. To study the regulation of sulfite/cysteine tolerance in more detail, we screened a C. albicans library of transcription factor mutants in the presence of sulfite. This approach and subsequent independent mutant analysis identified the zinc cluster transcription factor Zcf2 to govern sulfite/cysteine tolerance, as well as cysteine-inducible SSU1 and CDG1 gene expression. cdg1Δ and ssu1Δ mutants displayed reduced hypha formation in the presence of cysteine, indicating a possible role of the newly proposed mechanisms of cysteine tolerance and sulfite secretion in the pathogenicity of C. albicans. Moreover, cdg1Δ mutants induced delayed mortality in a mouse model of disseminated infection. Since sulfite is toxic and a potent reducing agent, its production by C. albicans suggests diverse roles during host adaptation and pathogenicity.
Resumo:
To achieve the goal of sustained donor-specifi c transplantation (Tx) tolerance, research efforts are now focusing on therapies based on specifi c cell subsets with regulatory properties. We and others have previously highlighted the therapeutic potential of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTreg) in promoting long-term graft acceptance. Using more stringent experimental Tx models, we were however confronted to limitations. Indeed, while the transfer of antigenspecifi c nTreg promoted long-term MHC-mismatched skin allograft acceptance in lymphopenic mice in the absence of any immunosuppressive drug, allograft survival was only slightly prolonged when nTreg were transferred alone into non-lymphopenic mice. This suggested that in more stringent conditions, adjuvant therapies may be needed to effectively control alloreactive T cells (Teff). Whether and how the expansion of the Treg pool could be best combined with current immunosuppressive regimens in clinical settings remains to be defi ned. In this study, we have used in vitro assays and an in vivo skin Tx model to investigate the effects of various immunosuppressive drugs on the survival, proliferation and effector function of Teff and nTreg in response to alloantigens. Teff proliferation was inhibited in a dose-dependent manner by rapamycin and cyclosporine A, while anti-CD154 mAb only marginally affected Teff survival, proliferation and effector fucntion in vitro. Rapamycin promoted apoptosis of Teff as compared to nTreg that were more resistant in the presence of IL-2. In vivo, the transfer and/or expansion of Treg could be advantageously combined with rapamycin and anti-CD154 mAb treatment to signifi cantly prolong MHC-mismatched skin allografts survival in non-lymphopenic recipients. Taken together our data indicate that immunosuppressive drugs differentially target T-cell subsets and that some regimens could promote Treg expansion while controlling the Teff pool in response to alloantigens.
Resumo:
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis whose interaction with the host may lead to a cell-mediated protective immune response. The presence of interferon-g (IFN-gamma) is related to this response. With the purpose of understanding the immunological mechanisms involved in this protection, the lymphoproliferative response, IFN-g and other cytokines like interleukin (IL-5, IL-10), and tumor necrosis factor alpha (TNF-a) were evaluated before and after the use of anti-TB drugs on 30 patients with active TB disease, 24 healthy household contacts of active TB patients, with positive purified protein derivative (PPD) skin tests (induration > 10 mm), and 34 asymptomatic individuals with negative PPD skin test results (induration < 5 mm). The positive lymphoproliferative response among peripheral blood mononuclear cells of patients showed high levels of IFN-g, TNF-a, and IL-10. No significant levels of IL-5 were detected. After treatment with rifampicina, isoniazida, and pirazinamida, only the levels of IFN-g increased significantly (p < 0.01). These results highlight the need for further evaluation of IFN-g production as a healing prognostic of patients treated.
Resumo:
Human T cell leukemia virus type-I (HTLV-I) infection is associated with spontaneous T cell activation and uncontrolled lymphocyte proliferation. An exacerbated type-1 immune response with production of pro-inflammatory cytokines (interferon-gamma and tumor necrosis factor-alpha) is significantly higher in patients with myelopathy associated to HTLV-I than in HTLV-I asymptomatic carriers. In contrast with HTLV-I, a chronic Schistosoma mansoni infection is associated with a type-2 immune response with high levels of interleukin (IL-4, IL-5, and IL-10) and low levels of IFN-gamma. In this study, clinical and immunological consequences of the HTLV-I and S. mansoni infection were evaluated. The immune response in patients with schistosomiasis co-infected with HTLV-I showed low levels of IL-5 (p < 0.05) in peripheral blood mononuclear cells cultures stimulated with S. mansoni antigen (SWAP) and decreased SWAP-specific IgE levels when compared with patients with only schistosomiasis (p < 0.05). Liver fibrosis was mild in all HTLV-I co-infected patients. Immunological response was also compared in individuals who had only HTLV-I infection with those who were co-infected with HTLV-I and helminths (S. mansoni and Strongyloides stercoralis). In patients HTLV-I positive co-infected with helminths the IFN-gamma levels were lower than in individuals who had only HTLV-I. Moreover, there were fewer cells expressing IFN-gamma and more cells expressing IL-10 in individuals co-infected with HTLV-I and helminths. These dates indicate that HTLV-I infection decrease type 2-response and IgE synthesis and are inversely associated with the development of liver fibrosis. Moreover, helminths may protect HTLV-I infected patients to produce large quantities of pro-inflammatory cytokines such as IFN-gamma.