185 resultados para Hydropower
Resumo:
El Sistema Energético Solar-Hidrógeno (SESH) constituye un sistema energético cuya fuente primaria es la energía solar, directa o indirecta, y la secundaria el hidrógeno. Actualmente, se considera como la mejor opción para complementar en el mediano y sustituir en el largo plazo, al actual sistema energético basado en fuentes fósiles. En este contexto se desenvuelve este trabajo, cuyo objetivo es identificar y analizar los factores intervinientes en el desarrollo del SESH en el ámbito latinoamericano, mediante una investigación documental basada en una amplia revisión bibliográfica. Se obtiene que la mayoría de países latinoamericanos disponen de ingentes potenciales aprovechables de energías renovables que harían posible y atractiva económicamente la implantación del SESH; que la hidrogenaría y biomasa son las fuentes más adecuadas como base para esta implantación, tanto por su potencial como por su presencia en la matriz energética y costos del SESH. Los estudios indican que la energización rural y el transporte urbano constituyen nichos de oportunidad para la penetración del SESH. También se reportan barreras: acciones de investigación escasas y concentradas en pocos países, un exiguo talento humano formado y capacitado para operar y desarrollar esta tecnología, como resultado de una débil oferta formativa; y la carencia de un marco legal e institucional que incentive el desarrollo de este sistema. Se concluye que sólo con la acción concertada de centros de investigación, universidades y la empresa privada, bajo la tutela del estado, se logrará que este elemento químico singular conduzca el desarrollo humano de la región por caminos sustentables.
Resumo:
Brazil is internationally acknowledged for its renewable sources, most notably, hydroelectric power plant projects which correspond to 65% of electricity production supply to the National Interconnected System. The main question behind this research is: what are the weights and the relative importance of the variables which have influence on the decision making process for the expansion of hydroelectric generation projects in Parana? The main objective is to propose a multi-criteria decision procedure, in association with water sources options that take into consideration the weight and relative importance of the alternatives having influence on the decision by enterprises in the generation of electricity in the state of Paraná. As far as the approach to the problem is concerned, this research can be classified as having mixed methodologies, applying Content Analysis, Delphi technique and the Analytic Hierarchy Process. Following Delphi methodology, a group of 21 was selected for data collection, all of those linked to Paranaense hydroelectricity market. And the main result was the construction of a decision tree in which it was possible to identify the importance and relative weight of the elements associated with the four dimensions of energy. In environmental dimension, the highest relative weight was placed on the loading capacity of Parana system; the economic dimension, the amortization of investment; in social dimension, the generation of direct work places and in institutional dimension, the availability of suitable sources of financing. Policy makers and business managers make their decisions based on specific criteria related to the organization segment, market information, economic and political behavior among other indicators that guide them in dealing with the typical tradeoffs of projects in hydropower area. The results obtained in the decision tree show that the economic bias is still the main factor in making investment decisions. However, environmental impacts on the State loading capacity, income generation, providing opportunities for direct as well as indirect jobs. And at an institutional level, the absence of funding sources show that the perception of experts is focused on other issues beyond the logic behind development per se. The order of priority of variables in this study indicates that in the current environment of uncertainty in the Brazilian economy as many variables must be analyzed and compared in order to optimize the scarce resources available to expand local development in relation to Paranaense water matrix.
Resumo:
Tese (doutorado)—Universidade de Brasília, Instituto de Ciências Humanas, Departamento de Geografia, Pós-Graduação em Geografia, 2016.
Resumo:
Hydropower dams block migration routes and disrupt longitudinal connectivity in rivers, thereby posing a threat to migratory fish species. Various fish passage solutions have been implemented to improve connectivity with varying success. A well-functioning passage solution must ensure safe and timely passage routes that are used by a substantial portion of the migrating fish. In this thesis, I report the results from telemetry studies where the behavior and survival of migrating Atlantic salmon spawners, post-spawners and smolts have been evaluated in relation to hydropower dam passage. I evaluate downstream passage performance at dams with no passage solutions in the River Klarälven, and with simple passage solutions in in the Winooski River. In the River Ätran, I study both upstream- and downstream passage performance at a dam with sophisticated passage solutions based on the best available technology. In addition, I have studied the survival and behavior of post-spawners and hatchery-released smolts. A substantial portion of the spawners survived spawning and initiated downstream migration. Most males migrated downstream in autumn following spawning, whereas females tended to stay in the river until spring. For hatchery-reared smolts, early release was associated with faster initiation of migration and higher survival compared to late release. Multiple dam passage resulted in high mortality for both smolts and kelts. For smolts, dam passage, even with simple passage solutions, was associated with substantial delay and mortality. High spill levels were linked to high survival and short delay for downstream migrating salmon. The best available passage solution, which consisted of a nature-like fishway and a low sloping intake rack to guide fish to a bypass, resulted in rapid passage of a large portion of the adult migrants.
Resumo:
Species occurrence and abundance models are important tools that can be used in biodiversity conservation, and can be applied to predict or plan actions needed to mitigate the environmental impacts of hydropower dams. In this study our objectives were: (i) to model the occurrence and abundance of threatened plant species, (ii) to verify the relationship between predicted occurrence and true abundance, and (iii) to assess whether models based on abundance are more effective in predicting species occurrence than those based on presence–absence data. Individual representatives of nine species were counted within 388 randomly georeferenced plots (10 m × 50 m) around the Barra Grande hydropower dam reservoir in southern Brazil. We modelled their relationship with 15 environmental variables using both occurrence (Generalised Linear Models) and abundance data (Hurdle and Zero-Inflated models). Overall, occurrence models were more accurate than abundance models. For all species, observed abundance was significantly, although not strongly, correlated with the probability of occurrence. This correlation lost significance when zero-abundance (absence) sites were excluded from analysis, but only when this entailed a substantial drop in sample size. The same occurred when analysing relationships between abundance and probability of occurrence from previously published studies on a range of different species, suggesting that future studies could potentially use probability of occurrence as an approximate indicator of abundance when the latter is not possible to obtain. This possibility might, however, depend on life history traits of the species in question, with some traits favouring a relationship between occurrence and abundance. Reconstructing species abundance patterns from occurrence could be an important tool for conservation planning and the management of threatened species, allowing scientists to indicate the best areas for collection and reintroduction of plant germplasm or choose conservation areas most likely to maintain viable populations.