995 resultados para Hybrid Recommendation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although urbanization can promote social and economic development, it can also cause various problems. As the key decision makers of urbanization, local governments should be able to evaluate urbanization performance, summarize experiences, and find problems caused by urbanization. This paper introduces a hybrid Entropy–McKinsey Matrix method for evaluating sustainable urbanization. The McKinsey Matrix is commonly referred to as the GE Matrix. The values of a development index (DI) and coordination index (CI) are calculated by employing the Entropy method and are used as a basis for constructing a GE Matrix. The matrix can assist in assessing sustainable urbanization performance by locating the urbanization state point. A case study of the city of Jinan in China demonstrates the process of using the evaluation method. The case study reveals that the method is an effective tool in helping policy makers understand the performance of urban sustainability and therefore formulate suitable strategies for guiding urbanization toward better sustainability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery/supercapacitor hybrid energy storage systems have been gaining popularity in electric vehicles due to their excellent power and energy performances. Conventional designs of such systems require interfacing dc-dc converters. These additional dc-dc converters increase power loss, complexity, weight and cost. Therefore, this paper proposes a new direct integration scheme for battery/supercapacitor hybrid energy storage systems using a double ended inverter system. This unique approach eliminates the need for interfacing converters and thus it is free from aforementioned drawbacks. Furthermore, the proposed system offers seven operating modes to improve the effective use of available energy in a typical drive cycle of a hybrid electric vehicle. Simulation results are presented to verify the efficacy of the proposed system and control techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project was a preliminary step towards the development of novel methods for early stage cancer diagnosis and treatment. Diagnostic imaging agents with high Raman signal enhancement were developed based on tailored assemblies of gold nanoparticles, which demonstrated potential for non-invasive detection from deep under the skin surface. Specifically designed polymers were employed to assemble gold nanoparticles into controlled morphologies including dimers, nanochains, nanoplates, globular and core-satellite nanostructures. Our findings suggest that the Raman enhancement is strongly dependent on assembly morphology and can be tuned to adapt to the requirements of the diagnostic agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a grid-side inverter based supercapacitor direct integration scheme for wind power systems. The inverter used in this study consists of a conventional two-level inverter and three H-bridge modules. Three supercapacitor banks are directly connected to the dc-links of H-bridge modules. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, for the maximum utilization of super capacitors their voltages should be allowed to vary. As a result of this variable voltage space vectors of the hybrid inverter get distributed unevenly. To handle this issue, a modified PWM method and a space vector modulation method are proposed and they can generate undistorted current even in the presence of unevenly distributed space vectors. A supercapacitor voltage balancing method is also presented in this paper. Simulation results are presented to validate the efficacy of the proposed scheme, modulation methods and control techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hybrid energy storage system (HESS) consisting of battery and supercapacitor (SC) is proposed for use in a wind farm in order to achieve power dispatchability. In the designed scheme, the rate of charging/discharging powers of the battery is controlled while the faster wind power transients are diverted to the SC. This enhances the lifetime of the battery. Furthermore, by taking into consideration the random nature of the wind power, a statistical design method is developed to determine the capacities of the HESS needed to achieve specified confidence level in the power dispatch. The proposed approach is useful in the planning of the wind farm-HESS scheme and the coordination of the power flows between the battery and SC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Figure Presented) Unusual conductivity effects: Suitably functionalized dendrimers (see picture) are capable of forming truly covalent three-dimensional networks with remarkably high conductivity on electrochemical doping. Depending on the charging level of the electroactive components used as building blocks for the dendrimer core and the perimeter, two separated regimes of electrical conductivity can be observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel dc-link voltage regulation technique for a hybrid inverter system formed by cascading two 3-level inverters. The two inverters are named as “bulk inverter” and “conditioning inverter”. For the hybrid system to act as a nine level inverter, conditioning inverter dc link voltage should be maintained at one third of the bulk inverter dc link voltage. Since the conditioning inverter is energized by two series connected capacitors, dc-link voltage regulation should be carried out by controlling the capacitor charging/discharging times. A detailed analysis of conditioning inverter capacitor charging/discharging process and a simplified general rule, derived from the analysis, are presented in this paper. Time domain simulations were carried out to demonstrate efficacy of the proposed method on regulating the conditioning inverter dc-link voltage under various operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented in this report is aimed to implement a cost-effective offline mission path planner for aerial inspection tasks of large linear infrastructures. Like most real-world optimisation problems, mission path planning involves a number of objectives which ideally should be minimised simultaneously. Understandably, the objectives of a practical optimisation problem are conflicting each other and the minimisation of one of them necessarily implies the impossibility to minimise the other ones. This leads to the need to find a set of optimal solutions for the problem; once such a set of available options is produced, the mission planning problem is reduced to a decision making problem for the mission specialists, who will choose the solution which best fit the requirements of the mission. The goal of this work is then to develop a Multi-Objective optimisation tool able to provide the mission specialists a set of optimal solutions for the inspection task amongst which the final trajectory will be chosen, given the environment data, the mission requirements and the definition of the objectives to minimise. All the possible optimal solutions of a Multi-Objective optimisation problem are said to form the Pareto-optimal front of the problem. For any of the Pareto-optimal solutions, it is impossible to improve one objective without worsening at least another one. Amongst a set of Pareto-optimal solutions, no solution is absolutely better than another and the final choice must be a trade-off of the objectives of the problem. Multi-Objective Evolutionary Algorithms (MOEAs) are recognised to be a convenient method for exploring the Pareto-optimal front of Multi-Objective optimization problems. Their efficiency is due to their parallelism architecture which allows to find several optimal solutions at each time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excellent multi-functional properties of carbon nanotube (CNT) and graphene have enabled them as appealing building blocks to construct 3D carbon-based nanomaterials or nanostructures. The recently reported graphene nanotube hybrid structure (GNHS) is one of the representatives of such nanostructures. This work investigated the relationships between the mechanical properties of the GNHS and its structure basing on large-scale molecular dynamics simulations. It is found that increasing the length of the constituent CNTs, the GNHS will have a higher Young’s modulus and yield strength. Whereas, no strong correlation is found between the number of graphene layers and Young’s modulus and yield strength, though more graphene layers intends to lead to a higher yield strain. In the meanwhile, the presences of multi-wall CNTs are found to greatly strengthen the hybrid structure. Generally, the hybrid structures exhibit a brittle behavior and the failure initiates from the connecting regions between CNT and graphene. More interestingly, affluent formations of monoatomic chains and rings are found at the fracture region. This study provides an in-depth understanding of the mechanical performance of the GNHSs while varying their structures, which will shed lights on the design and also the applications of the carbon-based nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a tag-based recommender system, the multi-dimensional correlation should be modeled effectively for finding quality recommendations. Recently, few researchers have used tensor models in recommendation to represent and analyze latent relationships inherent in multi-dimensions data. A common approach is to build the tensor model, decompose it and, then, directly use the reconstructed tensor to generate the recommendation based on the maximum values of tensor elements. In order to improve the accuracy and scalability, we propose an implementation of the -mode block-striped (matrix) product for scalable tensor reconstruction and probabilistically ranking the candidate items generated from the reconstructed tensor. With testing on real-world datasets, we demonstrate that the proposed method outperforms the benchmarking methods in terms of recommendation accuracy and scalability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research falls in the area of enhancing the quality of tag-based item recommendation systems. It aims to achieve this by employing a multi-dimensional user profile approach and by analyzing the semantic aspects of tags. Tag-based recommender systems have two characteristics that need to be carefully studied in order to build a reliable system. Firstly, the multi-dimensional correlation, called as tag assignment , should be appropriately modelled in order to create the user profiles [1]. Secondly, the semantics behind the tags should be considered properly as the flexibility with their design can cause semantic problems such as synonymy and polysemy [2]. This research proposes to address these two challenges for building a tag-based item recommendation system by employing tensor modeling as the multi-dimensional user profile approach, and the topic model as the semantic analysis approach. The first objective is to optimize the tensor model reconstruction and to improve the model performance in generating quality rec-ommendation. A novel Tensor-based Recommendation using Probabilistic Ranking (TRPR) method [3] has been developed. Results show this method to be scalable for large datasets and outperforming the benchmarking methods in terms of accuracy. The memory efficient loop implements the n-mode block-striped (matrix) product for tensor reconstruction as an approximation of the initial tensor. The probabilistic ranking calculates the probabil-ity of users to select candidate items using their tag preference list based on the entries generated from the reconstructed tensor. The second objective is to analyse the tag semantics and utilize the outcome in building the tensor model. This research proposes to investigate the problem using topic model approach to keep the tags nature as the “social vocabulary” [4]. For the tag assignment data, topics can be generated from the occurrences of tags given for an item. However there is only limited amount of tags availa-ble to represent items as collection of topics, since an item might have only been tagged by using several tags. Consequently, the generated topics might not able to represent the items appropriately. Furthermore, given that each tag can belong to any topics with various probability scores, the occurrence of tags cannot simply be mapped by the topics to build the tensor model. A standard weighting technique will not appropriately calculate the value of tagging activity since it will define the context of an item using a tag instead of a topic.