966 resultados para Human herpesvirus 4


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is evidence to suggest that plasma membrane Ca2+-ATPase (PMCA) isoforms are important mediators of mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184135 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial. cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing a-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250,mu M) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100,mu M) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of a,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular epidemiologic profile of human metapneumovirus (hMPV) infection has likely been skewed toward certain genetic subtypes because of assay-design issues, and no comprehensive studies have been conducted to date. Here, reverse-transcription polymerase chain reaction was used to screen 10,319 specimens from patients presenting to hospitals with suspected respiratory tract infections during 2001 - 2004. After analysis of 727 Australian hMPV strains, 640 were assigned to 1 of 4 previously described subtypes. hMPV was the most common pathogen detected, and subtype B1 was the most common lineage. Concurrent, annual circulation of all 4 hMPV subtypes in our study population was common, with a single, usually different hMPV subtype predominating in each year.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) can induce post-translational modification of proteins, resulting in protein cross-linking or incorporation of polyamines into substrates, and can also function as a signal transducing G protein. The role of TG2 in the formation of insoluble cross-links has led to its implication in some neurodegenerative conditions. Exposure of pre-differentiated SH-SY5Y cells to the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) resulted in significant dose-dependent reductions in TG2 protein levels, measured by probing Western blots with a TG2-specific antibody. Transglutaminase (TG) transamidating activity, on the other hand, monitored by incorporation of a polyamine pseudo-substrate into cellular proteins, was increased. Inhibitors of TG (putrescine) and TG2 (R283) exacerbated MPP+ toxicity, suggesting that activation of TG2 may promote a survival response in this toxicity paradigm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent studies have shown that Toll-like receptor (TLR)- signalling contributes significantly to the inflammatory events of atherosclerosis. As products of cholesterol oxidation (oxysterols) accumulate within atherosclerotic plaque and have been proposed to contribute to inflammatory signalling in the diseased artery, we investigated the potential of 7-ketocholesterol (7-KC), 7β-hydroxycholesterol (7β-HC) and 25-hydroxycholesterol (25-HC) to stimulate inflammatory signalling via the lipid-recognising TLRs 1, 2, 4 and 6. Each oxysterol stimulated secretion of the inflammatory chemokine interleukin-8 (IL-8), but not I?B degradation or tumour necrosis factor- release from monocytic THP-1 cells. Transfection of TLR-deficient HEK-293 cells with TLRs 1, 2, 4 or 6 did not increase sensitivity to the tested oxysterols. Moreover, blockade of TLR2 or TLR4 with specific inhibitors did not reduce 25-hydroxycholesterol (25-HC) induced IL-8 release from THP-1 cells. We conclude that although the oxysterols examined in this study may contribute to increased expression of certain inflammatory genes, this occurs by mechanisms independent of TLR signalling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is a multifunctional protein cross-linking enzyme that has been implicated in apoptotic cell clearance but is also important in many other cell functions including cell adhesion, migration and monocyte to macrophage differentiation. Cell surface-associated TG2 regulates cell adhesion and migration, via its association with receptors such as syndecan-4 and β1 and β3 integrins. Whilst defective apoptotic cell clearance has been described in TG2-deficient mice, the precise role of TG2 in apoptotic cell clearance remains ill-defined. Our work addresses the role of macrophage extracellular TG2 in apoptotic cell corpse clearance. Here we reveal TG2 expression and activity (cytosolic and cell surface) in human macrophages and demonstrate that inhibitors of protein crosslinking activity reduce macrophage clearance of dying cells. We show also that cell-impermeable TG2 inhibitors significantly inhibit the ability of macrophages to migrate and clear apoptotic cells through reduced macrophage recruitment to, and binding of, apoptotic cells. Association studies reveal TG2-syndecan-4 interaction through heparan sulphate side chains, and knockdown of syndecan-4 reduces cell surface TG2 activity and apoptotic cell clearance. Furthermore, inhibition of TG2 activity reduces crosslinking of CD44, reported to augment AC clearance. Thus our data define a role for TG2 activity at the surface of human macrophages in multiple stages of AC clearance and we propose that TG2, in association with heparan sulphates, may exert its effect on AC clearance via a mechanism involving the crosslinking of CD44.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper explores the extent to which students in the introductory HRM course in US institutions are likely to be exposed to information on international and cross-cultural aspects of HRM. Two methods are used: (1) an analysis of international content in fifteen popular introductory HRM textbooks and (2) a survey of professors teaching introductory HRM. The vast majority of responding instructors said their classes got some exposure to international issues in HRM, and most introductory texts included some relevant content. Critiques of international boxed features and dedicated IHRM chapters are provided, and suggestions for improving the quality and depth of IHRM content in introductory textbooks are made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has previously been found that complexes comprised of vitronectin and growth factors (VN:GF) enhance keratinocyte protein synthesis and migration. More specifically, these complexes have been shown to significantly enhance the migration of dermal keratinocytes derived from human skin. In view of this, it was thought that these complexes may hold potential as a novel therapy for healing chronic wounds. However, there was no evidence indicating that the VN:GF complexes would retain their effect on keratinocytes in the presence of chronic wound fluid. The studies in this thesis demonstrate for the first time that the VN:GF complexes not only stimulate proliferation and migration of keratinocytes, but also these effects are maintained in the presence of chronic wound fluid in a 2-dimensional (2-D) cell culture model. Whilst the 2-D culture system provided insights into how the cells might respond to the VN:GF complexes, this investigative approach is not ideal as skin is a 3-dimensional (3-D) tissue. In view of this, a 3-D human skin equivalent (HSE) model, which reflects more closely the in vivo environment, was used to test the VN:GF complexes on epidermopoiesis. These studies revealed that the VN:GF complexes enable keratinocytes to migrate, proliferate and differentiate on a de-epidermalised dermis (DED), ultimately forming a fully stratified epidermis. In addition, fibroblasts were seeded on DED and shown to migrate into the DED in the presence of the VN:GF complexes and hyaluronic acid, another important biological factor in the wound healing cascade. This HSE model was then further developed to enable studies examining the potential of the VN:GF complexes in epidermal wound healing. Specifically, a reproducible partial-thickness HSE wound model was created in fully-defined media and monitored as it healed. In this situation, the VN:GF complexes were shown to significantly enhance keratinocyte migration and proliferation, as well as differentiation. This model was also subsequently utilized to assess the wound healing potential of a synthetic fibrin-like gel that had previously been demonstrated to bind growth factors. Of note, keratinocyte re-epitheliasation was shown to be markedly improved in the presence of this 3-D matrix, highlighting its future potential for use as a delivery vehicle for the VN:GF complexes. Furthermore, this synthetic fibrin-like gel was injected into a 4 mm diameter full-thickness wound created in the HSE, both keratinocytes and fibroblasts were shown to migrate into this gel, as revealed by immunofluorescence. Interestingly, keratinocyte migration into this matrix was found to be dependent upon the presence of the fibroblasts. Taken together, these data indicate that reproducible wounds, as created in the HSEs, provide a relevant ex vivo tool to assess potential wound healing therapies. Moreover, the models will decrease our reliance on animals for scientific experimentation. Additionally, it is clear that these models will significantly assist in the development of novel treatments, such as the VN:GF complexes and the synthetic fibrin-like gel described herein, ultimately facilitating their clinical trial in the treatment of chronic wounds.