812 resultados para High intensity discharge lamps
Resumo:
BACKGROUND: Acute ankle sprains are usually managed functionally, with advice to undertake progressive weight-bearing and walking. Mechanical loading is an important modular of tissue repair; therefore, the clinical effectiveness of walking after ankle sprain may be dose dependent. The intensity, magnitude and duration of load associated with current functional treatments for ankle sprain are unclear.
AIM: To describe physical activity (PA) in the first week after ankle sprain and to compare results with a healthy control group.
METHODS: Participants (16-65 years) with an acute ankle sprain were randomised into two groups (standard or exercise). Both groups were advised to apply ice and compression, and walk within the limits of pain. The exercise group undertook additional therapeutic exercises. PA was measured using an activPAL accelerometer, worn for 7 days after injury. Comparisons were made with a non-injured control group.
RESULTS: The standard group were significantly less active (1.2 ± 0.4 h activity/day; 5621 ± 2294 steps/day) than the exercise (1.7 ± 0 .7 h/day, p=0.04; 7886 ± 3075 steps/day, p=0.03) and non-injured control groups (1.7 ± 0.4 h/day, p=0.02; 8844 ± 2185 steps/day, p=0.002). Also, compared with the non-injured control group, the standard and exercise groups spent less time in moderate (38.3 ± 12.7 min/day vs 14.5 ± 11.4 min/day, p=0.001 and 22.5 ± 15.9 min/day, p=0.003) and high-intensity activity (4.1 ± 6.9 min/day vs 0.1 ± 0.1 min/day, p=0.001 and 0.62 ± 1.0 min/day p=0.005).
CONCLUSION: PA patterns are reduced in the first week after ankle sprain, which is partly ameliorated with addition of therapeutic exercises. This study represents the first step towards developing evidence-based walking prescription after acute ankle sprain.
Resumo:
Recently, the use of plasma optics to improve temporal pulse contrast has had a remarkable impact on the field of high- power laser-solid density interaction physics. Opening an avenue to previously unachievable plasma density gradients in the high intensity focus, this advance has enabled researchers to investigate new regimes of harmonic generation and ion acceleration. Until now, however, plasma optics for fundamental laser reflection have been used in the sub-relativistic intensity regime (10(15) - 10(16)Wcm(-2)) showing high reflectivity (similar to 70%) and good focusability. Therefore, the question remains as to whether plasma optics can be used for such applications in the relativistic intensity regime (> 10(18)Wcm(-2)). Previous studies of plasma mirrors (PMs) indicate that, for 40 fs laser pulses, the reflectivity fluctuates by an order of magnitude and that focusability of the beam is lost as the intensity is increased above 5 x 10(16)Wcm(-2). However, these experiments were performed using laser pulses with a contrast ratio of similar to 10(7) to generate the reflecting surface. Here, we present results for PM operation using high contrast laser pulses resulting in a new regime of operation - the high contrast plasma mirror (HCPM). In this regime, pulses with contrast ratio > 10(10) are used to form the PM surface at > 10(19)Wcm(-2), displaying excellent spatial filtering, reflected near- field beam profile of the fundamental beam and reflectivities of 60 +/- 5%. Efficient second harmonic generation is also observed with exceptional beam quality suggesting that this may be a route to achieving the highest focusable harmonic intensities. Plasma optics therefore offer the opportunity to manipulate ultra-intense laser beams both spatially and temporally. They also allow for ultrafast frequency up-shifting without detrimental effects due to group velocity dispersion (GVD) or reduced focusability which frequently occur when nonlinear crystals are used for frequency conversion.
Resumo:
The possibility of using high-intensity laser-produced plasmas as a source of energetic ions for heavy ion accelerators is addressed. Experiments have shown that neon ions greater than 6 MeV can be produced from gas jet plasmas, and well-collimated proton beams greater than 20 MeV have been produced from high-intensity Laser solid interactions. The proton beams from the back of thin targets appear to be more collimated and reproducible than are high-energy ions generated in the ablated plasma at the front of the target and may be more suitable for ion injection applications. Lead ions have been produced at energies up to 430 MeV.
Resumo:
We have performed an experiment aimed at measuring self-generated magnetic fields produced in solids by high electron currents following high-intensity and high contrast short-pulse laser irradiation. This was done using longitudinal high resolution proton deflectometry. The experiment was performed at the Titan-JLF laser facility with a high-power short-pulse beam (700 fs, ~ 110 J) split into two beams irradiating two solid targets. One beam is used for the generation of protons and the other beam for the generation of the ultra-high currents of electrons and of the associated magnetic fields. This capability allows us to study the spatio-temporal evolution of the magnetic fields and its dependence on the laser intensity and target material. © Owned by the authors, published by EDP Sciences, 2013.
Resumo:
We use unique survey data linked to nearly a decade of administrative income support data to examine the relationship between early marijuana use (at age 14 or younger) and young people's educational outcomes. We find evidence that early marijuana use is related to educational penalties that are compounded by high-intensity use and are larger for young people living in families with a history of income support receipt. The relationships between marijuana use and both high school completion and achieving a university entrance score appear to stem from selectivity into the use of marijuana. In contrast, early marijuana use is associated with significantly lower university entrance scores for those who obtain one, and we provide evidence that this effect is unlikely to be driven by selection. Collectively, these findings point to a more nuanced view of the relationship between adolescent marijuana use and educational outcomes than is suggested by the existing literature.
Resumo:
Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.
Resumo:
A detailed knowledge of the physical phenomena underlying the generation and the transport of fast electrons generated in high-intensity laser-matter interactions is of fundamental importance for the fast ignition scheme for inertial confinement fusion.
Here we report on an experiment carried out with the VULCAN Petawatt beam and aimed at investigating the role of collisional return currents in the dynamics of the fast electron beam. To that scope, in the experiment counter-propagating electron beams were generated by double-sided irradiation of layered target foils containing a Ti layer. The experimental results were obtained for different time delays between the two laser beams as well as for single-sided irradiation of the target foils. The main diagnostics consisted of two bent mica crystal spectrometers placed at either side of the target foil. High-resolution X-ray spectra of the Ti emission lines in the range from the Ly alpha to the K alpha line were recorded. In addition, 2D X-ray images with spectral resolution were obtained by means of a novel diagnostic technique, the energy-encoded pin-hole camera, based on the use of a pin-hole array equipped with a CCD detector working in single-photon regime. The spectroscopic measurements suggest a higher target temperature for well-aligned laser beams and a precise timing between the two beams. The experimental results are presented and compared to simulation results.
Resumo:
Um dos princípios da Gestão é: “If you cannot measure it, you cannot improve it.” In The Economist – 26.Dez.2008, idea of 19th century English physicist Lord Kelvin. Embora seja uma afirmação aplicável à gestão económica, também pode ser utilizada no domínio da gestão da energia. Este trabalho surge da necessidade sentida pela empresa Continental - Industria Têxtil do Ave, S.A. em efetuar uma atualização dos seus standards de produção, minimizando os seus consumos de eletricidade e gás natural. Foi necessário efetuar o levantamento dos consumos em diversas máquinas e equipamentos industriais, caracterizando e analisando os consumos ao longo de todo o processo produtivo. Para o tratamento de dados recolhidos foi desenvolvida uma folha de cálculo em MS Office ExcelTM com metodologia adequada ao equipamento em análise, que dará apoio ao decisor para a identificação dos aspetos que melhorem o processo produtivo e garantam uma elevada eficiência energética. Porém, não se enquadra no âmbito do Plano Nacional de Racionalização de Energia, sendo uma “auditoria energética” ao processo produtivo. Recentemente, a empresa, tem vindo a utilizar equipamentos eletrónicos que permitem otimizar o funcionamento mecânico dos equipamentos e das potências instaladas dos transformadores, na tentativa de racionalizar o consumo da energia elétrica. Outros equipamentos como, conversores de frequência para controlo de motores, balastros eletrónicos que substituem os convencionais balastros ferromagnéticos das lâmpadas de descarga fluorescente, têm sido incluídos ao nível das instalações elétricas, sendo gradualmente substituída a eletromecânica pela eletrónica. Este tipo de soluções vem deteriorar as formas de onda da corrente e da tensão do sistema pela introdução de distorções harmónicas. Faz ainda parte deste trabalho, um estudo de uma solução que melhore, simultaneamente o fator de potência e reduza as harmónicas presentes num posto de transformação localizado no seio da fábrica. Esta solução, permite melhorar a qualidade da energia elétrica e as condições de continuidade de serviço, garantindo melhores condições de exploração e incrementando a produtividade da empresa.
Resumo:
In general Indian summer monsoon rainfall did not show any significant trend in all Indian summer monsoon rainfall series, however, it was reported that the ISMR is subjected to spatial trends. This paper made an attempt to bring out long term trends of different intensity classes of summer monsoon rainfall in different regions of Indian subcontinent. The long term trend of seasonal and monthly rainfall were also made using the India Meteorological Department gridded daily rainfall data with a spatial resolution of 1° × 1° latitude-longitude grid for the period from 1st January, 1901 to 31st December, 2003. The summer monsoon rainfall shows an increasing trend in southeast, northwest and northeast regions, whereas decreasing trend in the central and west coastal regions. In monthly scale, July rainfall shows decreasing trend over west coastal and central Indian regions and significant increasing trend over northeast region at 0.1% significant level. During the month August, decreasing trend is observed in the west coastal stations at 10% significant level. In most of the stations, mean daily rainfall shows an increasing trend for low and very high intense rainfall. For the moderate rainfall, the trend is different for different regions. In the central and southern regions the trend of moderate and moderately high classes show increasing trend. And for the high and very high intensity classes, the trend is decreasing significantly. In the northeastern regions, above 10 mm/day rainfall shows significantly increasing trend with 0.1% significant level.
Resumo:
Hydrographic characteristics of the southwest coast of India and its adjoining Cochin backwaters (CBW) were studied during the summer monsoon period. Anomalous formation of anoxia and denitrification were observed in the bottom layers of CBW, which 5 have not been previously reported elsewhere in any tropical estuarine systems. The prevalent upwelling in the Arabian Sea (AS) brought cool, high saline, oxygen deficient and nutrient-rich waters towards the coastal zone and bottom layers of CBW during the high tide. High freshwater discharge in the surface layers brought high amount of nutrients and makes the CBW system highly productive. Intrusion of AS waters seems 10 to be stronger towards the upstream end ( 15 km), than had been previously reported, as a consequence of the lowering of river discharges and deepening of channels in the estuary. Time series measurements in the lower reaches of CBW indicated a low mixing zone with increased stratification, 3 h after the high tide (highest high tide) and high variation in vertical mixing during the spring and neap phases. The upwelled waters 15 (O2 40 μM) intruded into the estuary was found to lose more oxygen during the neap phase (suboxic O2 4 μM) than spring phase (hypoxic O2 10 μM). Increased stratification coupled with low ventilation and presence of high organic matter have resulted in an anoxic condition (O2 = 0), 2–6 km away from barmouth of the estuary and leads to the formation of hydrogen sulphide. The reduction of nitrate and formation of nitrite 20 within the oxygen deficient waters indicated strong denitrification intensity in the estuary. The expansion of oxygen deficient zone, denitrification and formation of hydrogen sulphide may lead to a destruction of biodiversity and an increase of green house gas emissions from this region
Resumo:
This work evaluated the effect of pressure and temperature on yield and characteristic flavour intensity of Brazilian cherry (Eugenia uniflora L) extracts obtained by supercritical CO(2) using response surface analysis, which is a simple and efficient method for first inquiries. A complete central composite 2(2) factorial experimental design was applied using temperature (ranging from 40 to 60 degrees C) and pressure (from 150 to 250 bar) as independent variables. A second order model proved to be predictive (p <= 0.05) for the extract yield as affected by pressure and temperature, with better results being achieved at the central point (200 bar and 50 degrees C). For the flavour intensity, a first order model proved to be predictive (p <= 0.05) showing the influence of temperature. Greater characteristic flavour intensity in extracts was obtained for relatively high temperature (> 50 degrees C), Therefore, as far as Brazilian cherry is concerned, optimum conditions for achieving higher extract yield do not necessarily coincide to those for obtaining richer flavour intensity. Industrial relevance: Supercritical fluid extraction (SFE) is an emerging clean technology through which one may obtain extracts free from organic solvents. Extract yields from natural products for applications in food, pharmaceutical and cosmetic industries have been widely disseminated in the literature. Accordingly, two lines of research have industrial relevance, namely, (i) operational optimization studies for high SFE yields and (ii) investigation on important properties extracts are expected to present (so as to define their prospective industrial application). Specifically, this work studied the optimization of SFE process to obtain extracts from a tropical fruit showing high intensity of its characteristic flavour, aiming at promoting its application in natural aroma enrichment of processed foods. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to investigate the acute phase response (APR) in 15 horses by quantifying physiological venous blood variables and serum acute phase proteins (APP) at 5 minutes and 6 and 12 hours after a training match of high-goal polo. The horses were divided into three experimental groups based on their team positions, including defense (n = 6), midfield (n = 5), and attack (n = 4). Serum proteinograms were obtained by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Data were evaluated using analysis of variance for repeated measures. The match represented a high-intensity stimulus for all positions. Defenders appeared to use the anaerobic pathway more than the other positions, as shown by their lower pH and greater lactatemia. Alterations in muscle membrane permeability were observed in all horses, as seen by the increase in serum creatine kinase activity without a correlation with APR. Significant elevations in total serum protein, albumin, ceruloplasmin, haptoglobin, alpha-1 antitrypsin, and 23-kDa protein were seen only during the course of the physical exertion of the match, although there were no differences in these values among positions of the team. After 6 hours of the match, the concentration of transferrin declined, whereas that of alpha-1 acid glycoprotein remained unaltered at all assessed times. These results demonstrated that the defenders required the most use of the anaerobic pathway during the match, and that equestrian polo exercise triggers an acute phase response of relatively short duration; this APR is characterized as noninflammatory, as APR appears to be a physiological alteration related to the stress inherent in physical exercise. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this research was to verify the relationship between biological markers of performance of elite judo athletes and performance in different physical fitness tests. Twenty-one judo athletes were involved in the present observational and correlational study. Dermatoglyphic variables and the 2D:4D digit ratio were considered as biological markers, while the physical fitness variables analyzed were body fat, maximal strength, muscular power, the aerobic and anaerobic profile, and performance in specific tests. The statistics involved canonical correlations and a multivariate technique. A high and significant canonical correlation was observed between groups of variables, the first expressed by 1=0.999 (p<0.0001) and the second by 2=0.997 (p<0.001). It appears that, beyond height and body mass, total ridge count, pattern intensity for fingers and 2D:4D had more canonical loading. The physical fitness component of the first canonical variable incorporated, with high intensity were: the sum of skinfold thickness, the bench press onerepetition maximum (1RM), upper and lower body aerobic power. In the second canonical variable, physical fitness was composed of the squat 1RM, suspension time on the bar, the SJFT-index, and mean power during the upper body Wingate test. The data of this investigation showed the interdependence between biological markers of performance and physical fitness in high level judo athletes.