958 resultados para Generalized invexity
Resumo:
We present algorithms for computing approximate distance functions and shortest paths from a generalized source (point, segment, polygonal chain or polygonal region) on a weighted non-convex polyhedral surface in which obstacles (represented by polygonal chains or polygons) are allowed. We also describe an algorithm for discretizing, by using graphics hardware capabilities, distance functions. Finally, we present algorithms for computing discrete k-order Voronoi diagrams
Resumo:
We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
Background: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).Methods: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.Results The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.Conclusions: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Resumo:
This article presents an overview of a transform method for solving linear and integrable nonlinear partial differential equations. This new transform method, proposed by Fokas, yields a generalization and unification of various fundamental mathematical techniques and, in particular, it yields an extension of the Fourier transform method.
Resumo:
With the current concern over climate change, descriptions of how rainfall patterns are changing over time can be useful. Observations of daily rainfall data over the last few decades provide information on these trends. Generalized linear models are typically used to model patterns in the occurrence and intensity of rainfall. These models describe rainfall patterns for an average year but are more limited when describing long-term trends, particularly when these are potentially non-linear. Generalized additive models (GAMS) provide a framework for modelling non-linear relationships by fitting smooth functions to the data. This paper describes how GAMS can extend the flexibility of models to describe seasonal patterns and long-term trends in the occurrence and intensity of daily rainfall using data from Mauritius from 1962 to 2001. Smoothed estimates from the models provide useful graphical descriptions of changing rainfall patterns over the last 40 years at this location. GAMS are particularly helpful when exploring non-linear relationships in the data. Care is needed to ensure the choice of smooth functions is appropriate for the data and modelling objectives. (c) 2008 Elsevier B.V. All rights reserved.