860 resultados para Fungicides Physiological effect
Resumo:
In Neurospora crassa, the activity of δ-aminolevulinate dehydratase, the second and rate-limiting enzyme of the heme-biosynthetic pathway, is low in normal cells compared to the activity detected in plants, animals and bacteria. The activity is almost undetectable when Neurospora crassa is grown under iron-deficient conditions. The enzyme activity increases strikingly on addition of iron to iron-deficient cultures. This increase can be blocked by the addition of protoporphyrin, the penultimate product of the heme-biosynthetic pathway, to the cultures. The question whether iron directly acts at the genetic level or acts merely by removing protoporphyrin, converting the latter into heme prosthetic groups of hemoproteins, has been investigated by studying the effect of inhibition of heme synthesis on the induction of δ-aminolevulinate dehydratase. It has been found that treatments with levulinic acid or cyanide which inhibit the formation of the porphyrin moiety, induce δ-aminolevulinate dehydratase, whereas treatments which inhibit at a step after protoporphyrin formation (iron-deficiency and cobalt treatment) repress the enzyme. The endogenous levels of protoporphyrin are strictly controlled: a decrease below the optimum level causing induction and an increase above the optimum level leading to repression of δ-aminolevulinate dehydratase. Levulinic acid and cyanide can induce the enzyme in iron-deficient cultures in the absence of added iron, indicating that the metal iron acts only by converting protoporphyrin to heme fixed in hemoproteins in Neurospora crassa. Therefore it is suggested that protoporphyrin is the physiological regulator of δ-aminolevulinate dehydratase in Neurospora crassa.
Resumo:
Ammonia can accumulate in highly stocked sheep accommodation, for example during live export shipments, and could affect sheep health and welfare. Thus, the objective of this experiment was to test the effects of 4 NH3 concentrations, 4 (control), 12, 21, and 34 mg/m(3), on the physiology and behavior of wether sheep. Sheep were held for 12 d under a micro-climate and stocking density similar to shipboard conditions recorded on voyages from Australia to the Middle East during the northern hemispheric summer. Ammonia increased macrophage activity in transtracheal aspirations, indicating active pulmonary infl ammation; however, it had no effect (P > 0.05) on hematological variables. Feed intake decreased (P = 0.002) in proportion to ammonia concentration, and BW gain decreased (P < 0.001) at the 2 greatest concentrations. Exposure to ammonia increased (P = 0.03) the frequency of sneezing, and at the greatest ammonia concentration, sheep were less active, with less locomotion, pawing, and panting. Twenty-eight days after exposure to NH3, the pulmonary macrophage activity and BW of the sheep returned to that of sheep exposed to only 4 mg/m(3). It was concluded that NH3 induced a temporary inflammatory response of the respiratory system and reduced BW gain, which together indicated a transitory adverse effect on the welfare of sheep.
Resumo:
Bats of the genus Pteropus (Pteropodidae) are recognised as the natural host of multiple emerging pathogenic viruses of animal and human health significance, including henipaviruses, lyssaviruses and ebolaviruses. Some studies have suggested that physiological and ecological factors may be associated with Hendra virus infection in flying-foxes in Australia; however, it is essential to understand the normal range and seasonal variability of physiological biomarkers before seeking physiological associations with infection status. We aimed to measure a suite of physiological biomarkers in P. alecto over time to identify any seasonal fluctuations and to examine possible associations with life-cycle and environmental stressors. We sampled 839 adult P. alecto in the Australian state of Queensland over a 12-month period. The adjusted population means of every assessed hematologic and biochemical parameter were within the reported reference range on every sampling occasion. However, within this range, we identified significant temporal variation in these parameters, in urinary parameters and body condition, which primarily reflected the normal annual life cycle. We found no evident effect of remarkable physiological demands or nutritional stress, and no indication of clinical disease driving any parameter values outside the normal species reference range. Our findings identify underlying temporal physiological changes at the population level that inform epidemiological studies and assessment of putative physiological risk factors driving Hendra virus infection in P. alecto. More broadly, the findings add to the knowledge of Pteropus populations in terms of their relative resistance and resilience to emerging infectious disease.
Resumo:
The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.
Resumo:
This study examined the effect of exercise intensity and duration during 5-day heat acclimation (HA) on cycling performance and neuromuscular responses. 20 recreationally trained males completed a ‘baseline’ trial followed by 5 consecutive days HA, and a ‘post-acclimation’ trial. Baseline and post-acclimation trials consisted of maximal voluntary contractions (MVC), a single and repeated countermovement jump protocol, 20 km cycling time trial(TT) and 5x6 s maximal sprints (SPR). Cycling trials were undertaken in 33.0 ± 0.8 °C and 60 ± 3% relative humidity.Core(Tcore), and skin temperatures (Tskin), heart rate (HR), rating of perceived exertion (RPE) and thermal sensation were recorded throughout cycling trials. Participants were assigned to either 30 min high-intensity (30HI) or 90 min low-intensity (90LI) cohorts for HA, conducted in environmental conditions of 32.0 ± 1.6 °C. Percentage change time to complete the 20 km TT for the 90LI cohort was significantly improved post-acclimation(-5.9 ± 7.0%; P=0.04) compared to the 30HI cohort (-0.18 ± 3.9%; P<0.05). The 30HI cohort showed greatest improvements in power output (PO) during post-acclimation SPR1 and 2 compared to 90LI (546 ± 128 W and 517 ± 87 W,respectively; P<0.02). No differences were evident for MVC within 30HI cohort, however, a reduced performance indicated by % change within the 90LI (P=0.04). Compared to baseline, mean Tcore was reduced post-acclimation within the 30HI cohort (P=0.05) while mean Tcore and HR were significantly reduced within the 90LI cohort (P=0.01 and 0.04, respectively). Greater physiological adaptations and performance improvements were noted within the 90LI cohort compared to the 30HI. However, 30HI did provide some benefit to anaerobic performance including sprint PO and MVC. These findings suggest specifying training duration and intensity during heat acclimation may be useful for specific post-acclimation performance.
Resumo:
Understanding the dendrimer-drug interaction is of great importance to design and optimize the dendrimer-based drug delivery system. Using atomistic molecular dynamics (MD) simulations, we have analyzed the release pattern of four ligands (two soluble drugs, namely, salicylic acid (Sal), L-alanine (Ala), and two insoluble drugs, namely, phenylbutazone (Pbz) and primidone (Prim)), which were initially encapsulated inside the ethylenediamine (EDA) cored polyamidoamine (PAMAM) dendrimer using the docking method. We have computed the potential of mean force (PMF) variation with generation 5 (G5)-PAMAM dendrimer complexed with drug molecules using umbrella sampling. From our calculated PMF values, we observe that soluble drugs (Sal and Ala) have lower energy barriers than insoluble drugs (Pbz and Prim). The order of ease of release pattern for these drugs from G5 protonated PAMAM dendrimer was found to be Ala > Sal > Prim > Pbz. In the case of insoluble drugs (Prim and Pbz), because of larger size, we observe much nonpolar contribution, and thus, their larger energy barriers can be reasoned to van der Waals contribution. From the hydrogen bonding analysis of the four PAMAM drug complexes under study, we found intermolecular hydrogen bonding to show less significant contribution to the free energy barrier. Another interesting feature appears while calculating the PMF profile of G5NP (nonprotonated)-PAMAM Pbz and G5NP (nonprotonated)-PAMAM-Sal complex. The PMF was found to be less when the drug is bound to nonprotonated dendrimer compared to the protonated dendrimer. Our results suggest that encapsulation of the drug molecule into the host PAMAM dendrimer should be carried out at higher pH values (near pH 10). When such complex enters the human body, the pH is around 7.4 and at that physiological pH, the dendrimer holds the drug tightly. Hence the release of drug can occur at a controlled rate into the bloodstream. Thus, our findings provide a microscopic picture of the encapsulation and controlled release of drugs in the case of dendrimer-based host-guest systems.
Resumo:
A controlled laboratory experiment was carried out on forty Indian male college students for evaluating the effect of indoor thermal environment on occupants' response and thermal comfort. During experiment, indoor temperature varied from 21 degrees C to 33 degrees C, and the variables like relative humidity, airflow, air temperature and radiant temperature were recorded along with skin (T-sk) and oral temperature (T-core) from the subjects. From T-sk and T-c, body temperature (T-b) was evaluated. Subjective Thermal Sensation Vote (TSV) was recorded using ASHRAE 7-point scale. In PMV model, Fanger's T-sk equation was used to accommodate adaptive response. Stepwise regression analysis result showed T-b was better predictor of TSV than T-sk and T-core. Regional skin temperature response, lower sweat threshold temperature with no dipping sweat and higher cutaneous sweating threshold temperature were observed as thermal adaptive responses. Using PMV model, thermal comfort zone was evaluated as (22.46-25.41) degrees C with neutral temperature of 23.91 degrees C, whereas using TSV response, wider comfort zone was estimated as (23.25-2632) degrees C with neutral temperature at 24.83 degrees C. It was observed that PMV-model overestimated the actual thermal response. Interestingly, these subjects were found to be less sensitive to hot but more sensitive to cold. A new TSV-PPD relation (PPDnew) was obtained with an asymmetric distribution of hot-cold thermal sensation response in Indians. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Neural activity across the brain shows both spatial and temporal correlations at multiple scales, and understanding these correlations is a key step toward understanding cortical processing. Correlation in the local field potential (LFP) recorded from two brain areas is often characterized by computing the coherence, which is generally taken to reflect the degree of phase consistency across trials between two sites. Coherence, however, depends on two factors-phase consistency as well as amplitude covariation across trials-but the spatial structure of amplitude correlations across sites and its contribution to coherence are not well characterized. We recorded LFP from an array of microelectrodes chronically implanted in the primary visual cortex of monkeys and studied correlations in amplitude across electrodes as a function of interelectrode distance. We found that amplitude correlations showed a similar trend as coherence as a function of frequency and interelectrode distance. Importantly, even when phases were completely randomized between two electrodes, amplitude correlations introduced significant coherence. To quantify the contributions of phase consistency and amplitude correlations to coherence, we simulated pairs of sinusoids with varying phase consistency and amplitude correlations. These simulations confirmed that amplitude correlations can significantly bias coherence measurements, resulting in either over-or underestimation of true phase coherence. Our results highlight the importance of accounting for the correlations in amplitude while using coherence to study phase relationships across sites and frequencies.
Resumo:
17 p.
Sensitivity of sturgeons to environmental hypoxia: a review of physiological and ecological evidence
Resumo:
In this essay, three lines of evidence are developed that sturgeons in the Chesapeake Bay and elsewhere are unusually sensitive to hypoxic conditions: 1. In comparison to other fishes,sturgeons have a limited behavioral and physiological capacity to respond to hypoxia. Basal metabolism, growth, feeding rate, and survival are sensitive to changes in oxygen level, which may indicate a relatively poor ability of sturgeons to oxyregulate. 2. During summertime, temperatures >20°C amplify the effect of hypoxia on sturgeons and other fishes due to a temperature oxygen "squeeze" (Coutant 1987). In bottom waters, this interaction results in substantial reduction of habitat; in dry years, sturgeon nursery habitats in the Chesapeake Bay may be particularly reduced or even eliminated. 3. While evidence for population level effects due to hypoxia is circumstantial, there are corresponding trends between the absence of Atlantic sturgeon reproduction in estuaries like the Chesapeake Bay where summertime hypoxia predominates on a system-wide scale. Also, the recent and dramatic recovery of shortnose sturgeon in the Hudson River (4-bid increase in abundance from 1980 to1995) may have been stimulated by improvement of a large portion of the nursery habitat that was restored from hypoxia to normoxia during the period 1973-1978.
Resumo:
This study document effects of short-term (96h) sublethal levels of copper, cadmium and their mixture on the amino acid composition of postlarvae of the penaeid shrimp, P.monodon and P.penicillatus . All experimental conditions were kept constant, temperature between 25-27•C and salinity 21-22 ppt. The estimated LD50 for Cu was 200 ug/L, for Cd 177.5 ug/L and for Cu.Cd mixture 250ug/L. In P. penicillatus at the same concentration of each metal, there was significant reduction in amino acid content, which was 8.01% higher than the control. Almost similar reduction in some amino acids was observed in P.monodon. At the maximum concentration of 400 ug/L, cadmium caused higher reduction in amino acid composition than did copper. Thus, amino acid composition may be regarded as a sensitive biochemical indicator of Cu and Cd toxicity because of the effect of these metals on protein synthesis, a signal of physiological stress in marine organisms subjected to heavy metal pollution.
Resumo:
Benni (Barbus sharpeyi) is valuable fish that Khuzastan fisheries office propagated it artificially in Susangerd Fish Propagation Center every year. Pituitary gland is used for this aim but female fish lost their fertilization power after 2-3 years, so in present research, new hormone, that is called Ghrelin. The aims of this research are histology, hormonal, zygote and larval generation studies and comparing the results with each other. Ghrelin is a multifunctional peptidyl hormone which increases GTH-II in fish, amphibian, and birds and mammalian so its effect on Benni sexual maturation was studied. Human Ghrelin (hGRL) was obtained from ANASPEC, Canada, with 28 amino acids. In the present study, three levels of ghrelin including 0 (sham treatments), 0.10 (treatment 1) and 0.15 μg/g (treatment 2) body wt and one level of pituitary gland 4000 μg/g (pituitary treatment) with two replications were used. 56 specimens were injected intraperitonealy and their ghrelin level was evaluated immediately after injection and after 24 h. Control fish(n=16) were just injected by physiological saline. For hormonal studies sham and experimental fish(n=40) were anesthetized with MS-222 at a concentration of 250 mg l-1, and blood samples were collected and kept at 4ْC, then spun to collect serum. Serum samples were stores at -20ْC until the RIA for CTH-II. For histology studies immediately after injection a piece of ovary was collected from control fish (Sham zero) after being anesthetized. The sampled ovaries were fixed in Buin solution and embedded in paraffin, and stained to Sections of 5–6 μm using haematoxylin and eosin. The ovarian samples were performed with a compound microscope. Histology and micrometry studies had done. The mature oocytes had given from mature fish, then weighted and the working fecundity were counted. The mature oocytes fertilized, the eggs were incubated and the percentage of fertilization was calculated. After 72h the eggs hatched and the percentage of hatch was counted. The percentage of hindrance was calculated after 6 days. Hormonal results indicate that ghrelin and pituitary increase significantly the GTH-II level in comparison to sham. Macroscopic observations (before taking ovary) showed that ovaries with green colored have couple oval structure located in the abdominal cavity. Microscopic studies of dissected ovaries indicated simultaneous growth of 127 oocytes with 6 stages. The type of the ovary is asynchronous. The results indicated that both of the ghrelin treatment increased the percentage of mature follicles followed by decrease of immature follicles. There were significant differences (P<0.05) between the number of mature and immature follicles. Average diameter of follicle in both of the ghrelin treatment was significantly (P<0.05) declined in the stages of the vitellogenesis when the result compared to the other treatment. Just treatment 1 and pituitary treatment can give mature oocytes. The fecundity of pituitary treatment significantly increase in comparision to ghrelin treatment (P<0.05). In food-restricted fish where endogenous ghrelin levels are known to be increased, a chronic administration of ghrelin induces overt negative effect in releasing mature oocytes. The percentage of fertilization was significantly increase (P<0.05) in ghrelin t. in comparison to pituitary t. and the percentage of hatch was significantly increase (P<0.05) in pituitary t. in comparison to ghrelin t. There was no significant difference (P>0.05) in terms of percentage of hindrance between treatments. In conclusion, the present study demonstrated that ghrelin has positive effect on the level of GTH-II, oocyte maturation, ovarian vitellogenesis and the number of mature follicles of Barbus sharpeyi ovary. Increasing of the mature follicles number reduces their average diameter, indicating stimulating effect of ghrelin in sexual maturation of Barbus sharpeyi.The ghrelin and pituitary treatment have equal chance in the post-stage of spawning.
Resumo:
A recent study has shown that nonanoic acid (NA) is one of the strongest allelochemicals to a cyanobacterium Microcystis aeruginosa, but the physiological responses of M. aeruginosa to NA stress remain unknown. In this study, physiological characters such as the growth rate, photosynthetic processes, phosphorus and nitrogen uptake kinetics, and the contents of intracellular microcystin of M. aeruginosa PCC7806 were studied under the NA stress. The results showed that the growth rates of M. aeruginosa PCC 7806 were significantly inhibited in all NA stress treatments during first 3 days after exposure, and the growth rate was recovered after 5-day exposure. After 2-day exposure, the contents of both phycocyanin and allophycocyanin per cell decreased at NA concentration of 4 mg L-1, and oxygen evolution was inhibited even at the concentration of 0.5 mg L-1, but carotenoid content per cell was slightly boosted in NA stress. Physiological recovery of M. aeruginosa PCC7806 was observed after 7-day exposure to NA. It was shown that NA stress had no effect on uptake of nitrogen, but could stimulate the uptake of phosphorus. The contents of intracellular microcystin have not been affected in all NA treatments in contrast with the control. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24: 610-617, 2009.
Resumo:
Iron is an essential trace element for biological requirements of phytoplankton. Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii were conducted in this study. Results showed that 0.01 mu M [Fe3+] seriously inhibited growth and chlorophyll synthesis of M. wesenbergii, and induced temporary increase of ATPase activities, however, NR. ACP and ALP activities were restrained by iron limitation. Interestingly, iron addition on day 8 resulted in the gradual restoration of structures and functions of above enzymes and resisted a variety of stresses from iron limitation. M. wesenbergii in 10 mu M [Fe3+] treatment group grew normally. enzymes maintained normal levels, and residual phosphate contents in cultures first sharply decreased, then smoothly as M. wesenbergii has a characteristic of luxury consumption of phosphorus. Above parameters in 100 mu M [Fe3+] treatment group were almost same with those in 10 mu M [Fe3+] treatment group except for NR, ACP and ALP activities. In 100 mu M [Fe3+] treatment group, activities of ACP and ALP had temporary increase because phosphate and ferric iron could form insoluble compound - ferric phosphate (Fe3PO4) through adsorption effect. resulting in lack of bioavailable phosphate in culture media. The experiment suggested that too low or too high iron can affect obviously physiological and biochemical characteristics of M. wesenbergii.
Resumo:
We reported diet fluctuation in isotopic composition of surface seston from two connected lakes in China, oligotrophic Lake Fuxian and eutrophic Lake Xingyun. The decrease in nighttime and the increase in daytime of isotope signatures of seston might be attributed to the light-dependent balance between the photosynthesis and the respiration of phytoplankton and to the changes in the species composition and the relative abundance of phytoplankton functional groups at the water's surface in diel growth. The relatively high isotopic signatures and the large-extent diel fluctuation of phytoplankton in the eutrophic lake could be due to utilization of heavy-isotope-enriched inorganic sources and the high primary productivity. Extent of diel fluctuation in delta C-13 and delta N-15 of phytoplankton were relatively small compared with the isotopic enrichment per trophic transfer and thus might have negligible effect on the source identification and the trophic evaluation of consumers.