313 resultados para Faunas plistocénicas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most species of Late Cretaceous deep-sea benthic foraminifera are believed to be cosmopolitan and therefore to exhibit only minor biogeographical differences. In this preliminary report, six Deep Sea Drilling Project (DSDP) sites from different oceans, paleolatitudes, and paleodepths were analyzed for terminal Cretaceous abyssal-bathyal benthic foraminifera in order to investigate their assumed cosmopolitan distribution and the question of whether different faunal compositions are related to time, different paleolatitudes, and/or different paleodepths. The material studied was obtained from the low-latitude Site 465 (Pacific Ocean), and the intermediate-latitude Sites 384 (North Atlantic) and 356, 516, 525, and 527 (South Atlantic). The material analyzed represents a time slice encompassing the last 20-50 k.y. of the Cretaceous. The faunas contain numerous "Velasco-type" species, such as Gavelinella beccariiformis (White), Cibicidoides velascoensis (Cushman), Nuttallides truempyi (Nuttall), Gaudryina pyramidata Cushman, and various gyroidinoids and buliminids. The results contradict the general assumption of the cosmopolitan nature of Late Cretaceous deep-sea benthic foraminifera advocated in the literature. Only about 9% of the taxa identified were found to be truly "cosmopolitan" through their occurrence at all the sites analyzed. On the basis of correspondence analysis and relative abundance data, three assemblages and three subassemblages were recognized: (1) a bathyal-abyssal assemblage [Nuttallinella sp. A, Cibicidoides hyphalus (Fisher), Valvalabamina sp. evolute form, and Gyroidinoides spp.] at the South Atlantic Sites 356, 516, 525, and 527, divided into three subassemblages, namely (a) a middle bathyal subassemblage [Eouvigerina subsculptura McNeil and Caldwell, Truaxia aspera (Cushman), and G. pyramidata] at Sites 516 and 525, (b) a lower bathyal subassemblage [Osangularia? sp., Pyramidina rudita (Cushman and Parker), and Quadrimorphina camerata (Brotzen)] at Site 356, and (c) an abyssal subassemblage [Gyroidinoides sp. C, Hyperammina-Bathysiphon, Gyroidinoides beisseli (White), and Globorotalites sp. B] at Site 527; (2) an abyssal assemblage [Buliminella cf. plana (Cushman and Parker) and Bulimina incisa Cushman] at the North Atlantic Site 384; and (3) a middle bathyal assemblage [Vulvulina sp. A, Osangularia navarroana (Cushman), Alabamina? sp., Bulimina velascoensis (Cushman), Spiroplectammina spp. calcareous forms, and Bulimina trinitatensis Cushman and Jarvis] at the Pacific Site 465.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abundance patterns of planktic and benthic foraminifera from a tropical Atlantic drill site (Ocean Drilling Program Site 1259, Demerara Rise, Suriname margin) display a pronounced 400 kyr cyclicity, uninterrupted throughout our ~87.8-92 Ma record, between two clearly distinguishable assemblages: (1) a pelagic foraminifer fauna, which represents a deep oxygen minimum zone, and (2) another assemblage representing a shallow oxygen minimum zone where the foraminifer fauna is dominated by a higher diversity population of mostly small clavate and biserial species common in epicontinental seas. The cyclic changes in the long eccentricity band (400 kyr) between these two assemblages are proposed to reflect changes in the mean latitudinal position of the Intertropical Convergence Zone (ITCZ). Associated fluctuations in precipitation and trade wind strength may have influenced the upwelling regime at Demerara Rise leading to the observed cyclicity of planktic foraminiferal assemblages. The severe Turonian to Coniacian paleoclimatic and paleoceanographic changes in the Atlantic Ocean (e.g., gateway opening, cooling, and glaciation), however, seem to have no influence on the composition of tropical planktic foraminiferal faunas. There is no apparent relationship between foraminifer abundances and a major deflection in the stable isotope record interpreted elsewhere as a sign of the growth and decay of a large polar ice sheet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sparse to moderately abundant foraminiferal assemblages from Oligocene and Lower Miocene sediments in the CRP-2/2A drillhole contain C.27 genera and 42 species of calcareous benthic foraminifera. No planktic or agglutinated taxa were observed. On the basis of their faunal characteristics, four Foraminiferal Units are defined in drillhole succession: Foraminiferal Unit I (26.91-193.95 mbsf), mostly sparse assemblages with Elphidium magellanicum and Cribroelphidium sp.; Foraminiferal Unit II (193.95-342.42 mbsf), mostly moderately abundant assemblages with Cassidulinoides aequilatera and Eponides bradyi; Foraminiferal Unit III (342.42-486.19 mbsf), moderately abundant to sparse assemblages characterised by Cassidulinoides chapmani and Stainforthia sp.; and Foraminiferal Unit IV, Improverished (486.19-624.15, total depth, mbsf), with mostly barren residues, but with large Milioliidae recorded in situ at various horizons in the drill core. Foraminiferal Units I-IV lack taxa allowing correlation to standard zonal schemes. Inspection of faunal records from CIROS-1 and DSDP 270 indicates that, although the faunas show an overall similarity, CRP-2/2A Foraminiferal Units I-IV are not identifiable at these sites. The units are therefore most likely to reflect local environmental changes, and probably will prove useful for local correlation, but their lateral extent is undetermined. All four assemblages apparently represent various glacially-influenced shelf environments, and appear to reflect a long term deepening trend from Units IV to II, from perhaps inner to mid or outer-shelf depths, followed by a return to shallower, inner shelf, conditios for Unit I.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal biofacies may vary independently of water depth and water mass; however, calibration of biofacies and stratigraphic ranges with independent paleodepth estimates allows reconstruction of age-depth patterns applicable throughout the deep Atlantic (Tjalsma and Lohmann, 1983). We have attempted to test these faunal calibrations in a continental margin setting, reconstructing Eocene benthic foraminiferal distributions along a dip section afforded by the New Jersey Transect (DSDP Sites 612, 108, 613). The following independent estimates of Eocene depths for the transect were obtained by "backtracking," "backstripping," and by assuming increasing depth downdip ("paleoslope"): Site 612, near the middle/lower bathyal boundary (about 1000 m); Site 108, in the middle bathyal zone (about 1600 m); and Site 613, near the lower bathyal/upper abyssal boundary (about 2000 m). Within uncertainties of backtracking (hundreds of meters), these estimates agree with estimates of paleodepth based on comparison of the New Jersey margin biofacies with other backtracked faunas. The stratigraphic ranges of many benthic taxa correspond to those found at other Atlantic DSDP sites. The major biofacies patterns show: (1) a depth dichotomy between an early to middle Eocene Nuttallides truempyidominated biofacies (greater than 2000 m) and a Lenticulina-Osangularia-Alabamina cf. dissonata biofacies (1000- 2000 m); and (2) a difference between a middle and a late Eocene biofacies at Site 612. The faunal boundary at about 2000 m, between bathyal and abyssal zones, occurs not only on the margin, but also throughout the deep Atlantic. The faunal change between the middle and late Eocene at Site 612 was due to a decrease of Lenticulina spp., the local disappearance of N. truempyi, and establishment of a Bulimina alazanensis-Gyroidinoides spp. biofacies. Although this change could be attributed to local paleoceanographic or water-depth changes, we argue that it is the bathyal expression of a global deep-sea benthic foraminiferal change which occurred across the middle/late Eocene boundary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eocene through Quaternary planktonic foraminifers were identified in cores recovered during Leg 126. Turbidites and volcanic ash beds are intercalated with hemipelagic sediments. Preservation of foraminifers is variable, ranging from excellent to poor and appears to have been affected by fluctuations in the carbonate compensation depth (CCD), depth of burial, changes in bottom water temperature, current velocity, sediment accumulation rates and seafloor topography. Preservation of foraminifers in Quaternary sediments is generally good, however, species abundance varies by a factor of I05-106 and reflects dilution by volcanogenic as well as terrigenous constituents and cannot be used for paleoceanographic reconstructions. In pre-Quaternary deposits planktonic foraminiferal tests frequently exhibit dissolution effects; biostratigraphic zonation and placement of zonal boundaries is difficult owing to hiatuses, dissolution facies, extraneously deposited sediments, and discontinuous coring. The Eocene foraminiferal faunas include specimens of the Globorotalia cerroazulensis plexus, markers of Zone P16 as well as Globigerina senni and Globigerinatheka spp., which became extinct before the end of the Eocene. Six hiatuses and/or dissolution periods, probably reflecting global cooling events and/or changes in oceanic circulation patterns were recorded at Site 792. Recrystallized, poorly preserved, possibly reworked Eocene species (Globigerina senni and Globigerapsis sp.) were recorded in sediments at Site 793.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktic foraminiferal (PF) flux and faunal composition from three sediment trap time series of 2002-2004 in the northeastern Atlantic show pronounced year-to-year variations despite similar sea surface temperature (SST). The averaged fauna of the in 2002/2003 is dominated by the species Globigerinita glutinata, whereas in 2003/2004 the averaged fauna is dominated by Globigerinoides ruber. We show that PF species respond primarily to productivity, triggered by the seasonal dynamics of vertical stratification of the upper water column. Multivariate statistical analysis reveals three distinct species groups, linked to bulk particle flux, to chlorophyll concentrations and to summer/fall oligotrophy with high SST and stratification. We speculate that the distinct nutrition strategies of strictly asymbiontic, facultatively symbiontic, and symbiontic species may play a key role in explaining their abundances and temporal succession. Advection of water masses within the Azores Current and species expatriation result in a highly diverse PF assemblage. The Azores Frontal Zone may have influenced the trap site in 2002, indicated by subsurface water cooling, by highest PF flux and high flux of the deep-dwelling species Globorotalia scitula. Similarity analyses with core top samples from the global ocean including 746 sites from the Atlantic suggest that the trap faunas have only poor analogs in the surface sediments. These differences have to be taken into account when estimating past oceanic properties from sediment PF data in the eastern subtropical North Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Middle Jurassic radiolarians have been recovered from the western Pacific for the first time. The oldest faunas are assigned to the middle and upper Tricolocapsa conexa Zone, indicating a Bathonian/Callovian age. The faunas contain more than 30 species and are characterized by an abundance of small nassellarians with a constricted distal end. The faunas compare well with Tethyan faunas, and are especially similar to Japanese faunas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DSDP Site 516 contains a complete middle Eocene to lower Miocene interval with a well-developed Oligocene sequence that is more than 300 m thick. In this paper, the most important and characteristic benthic foraminiferal species from this interval are described and illustrated, and their quantitative and biostratigraphic distribution is given. Middle Eocene benthic assemblages, derived from pelagic intercalations in a partly turbiditic sequence, are low in diversity. Benthic assemblages of fairly high diversity occur in limestones, chalks, and oozes of the upper Eocene to lower Miocene. The consistently high rate of new species appearances at Site 516 during late Eocene and Oligocene contrasted greatly with the very slow rate of change in abyssal faunas at that time; there were no significant faunal changes at the Eocene/Oligocene boundary. The assemblages are dominated by Cibicidoides (mostly C. ungerianus or C. kullenbergi) and Lenticulina. Buliminids were also important during the Eocene and early Oligocene. Faunal comparison with other Atlantic DSDP sites and drill holes in the Gulf of Mexico suggest an approximately mid-bathyal (500-1500 m) depth of deposition during late Eocene and Oligocene.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-preserved radiolarian assemblages of late middle Miocene to early Pliocene age are found in Ocean Drilling Program (ODP) Hole 1138A (Cores 183-1138A-12R to 20R), which was rotary drilled into the Central Kerguelen Plateau. The faunas are typical for Antarctic assemblages of this time interval, and the site appears to have been south of the Polar Front during the time period studied. Despite only moderate drilling recovery of the section, most late middle to early Pliocene radiolarian zones are present, although at the sample resolution used, subzones could not be identified. A significant discontinuity in the section is present at the boundary between lithologic Units I and II (between Cores 183-1138A-12R and 13R), corresponding to an interval from at least 4.6 to 6.1 Ma. Mixed late Miocene-early Pliocene assemblages are seen in the base of Core 183-1138A-12R (Sample 183-1138A-12R-3, 20 cm), and the overlying basal Pliocene Tau Zone appears to be absent. It cannot be determined if the discontinuity is due to incomplete recovery of the section and drilling disturbance or if it reflects a primary sedimentary structure - a hiatus or interval of condensed sedimentation.