985 resultados para FOOD-BORNE SALMONELLA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The identification of Salmonella spp. in food samples by microbiological diagnosis is time consuming, with approximately five different stages, requiring about 120 hours until the final result. The utilization of the polymerase chain reaction technique (PCR) can reduce this time, but substances present in samples may affect the reaction. The present work aimed to compare DNA extraction by thermic treatment and by the use of cetyltrimethil ammonium bromide (CTAB), in products originated from poultry houses corresponding to raw material (meat meal) and experimentally contaminated drag swabs. Materials obtained from the extractions were submitted to PCR, utilizing a pair of initiator oligonucleotides for amplification of Sdf 1 gene fragments. Comparing the methods of extraction, it was observed that when CTAB was employed, SE was detected in 70% of meat meal and in 80% of drag swabs, while the thermic treatment method yielded positive results in 20% of meat meal and in 40% of drag swabs. SE was detected under both methods utilized for DNA extraction, but the use of CTAB detected a greater number of positive samples, compared with thermal treatment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Recent Salmonella outbreaks have prompted the need for new processing options for peanut products. Traditional heating kill-steps have shown to be ineffective in lipid-rich matrices such as peanut products. High pressure processing is one such option for peanut sauce because it has a high water activity, which has proved to be a large contributing factor in microbial lethality due to high pressure processing. Four different formulations of peanut sauce were inoculated with a five strain Salmonella cocktail and high pressure processed. Results indicate that increasing pressure or increasing hold time increases log10 reductions. The Weibull model was fitted to each kill curve, with b and n values significantly optimized for each curve (p-value < 0.05). Most curves had an n parameter value less than 1, indicating that the population had a dramatic initial reduction, but tailed off as time increased, leaving a small resistant population. ANOVA analysis of the b and n parameters show that there are more significant differences between b parameters than n parameters, meaning that most treatments showed similar tailing effect, but differed on the shape of the curve. Comparisons between peanut sauce formulations at the same pressure treatments indicate that increasing amount of organic peanut butter within the sauce formulation decreases log10 reductions. This could be due to a protective effect from the lipids in the peanut butter, or it may be due to other factors such as nutrient availability or water activity. Sauces pressurized at lower temperatures had decreased log10 reductions, indicating that cooler temperatures offered some protective effect. Log10 reductions exceeded 5 logs, indicating that high pressure processing may be a suitable option as a kill-step for Salmonella in industrial processing of peanut sauces. Future research should include high pressure processing on other peanut products with high water activities such as sauces and syrups as well as research to determine the effects of water activity and lipid composition with a food matrix such as peanut sauces.
Resumo:
Growth potential (delta) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of 6 of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the delta of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7 degrees C) and abuse temperature (15 degrees C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L monocytogenes was able to grow (delta >= 0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L monocytogenes. The highest 5 values were obtained when the RTE vegetables were stored 15 degrees C/6 days in collard greens (delta=3.3) and arugula (delta=3.2) (L monocytogenes) and arugula (delta=4.1) and escarole (delta=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (p<0.05). Counts of lactic acid bacteria were higher in vegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The growth parameters (growth rate, mu and lag time, lambda) of three different strains each of Salmonella enterica and Listeria monocytogenes in minimally processed lettuce (MPL) and their changes as a function of temperature were modeled. MPL were packed under modified atmosphere (5% O-2, 15% CO2 and 80% N-2), stored at 7-30 degrees C and samples collected at different time intervals were enumerated for S. enterica and L monocytogenes. Growth curves and equations describing the relationship between mu and lambda as a function of temperature were constructed using the DMFit Excel add-in and through linear regression, respectively. The predicted growth parameters for the pathogens observed in this study were compared to ComBase, Pathogen modeling program (PMP) and data from the literature. High R-2 values (0.97 and 0.93) were observed for average growth curves of different strains of pathogens grown on MPL Secondary models of mu and lambda for both pathogens followed a linear trend with high R2 values (>0.90). Root mean square error (RMSE) showed that the models obtained are accurate and suitable for modeling the growth of S. enterica and L monocytogenes in MP lettuce. The current study provides growth models for these foodborne pathogens that can be used in microbial risk assessment. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Human infections with EHEC such as O157:H7 have been a great concern for worldwide food-industry surveillance. This pathogen is commonly associated with bloody diarrhea that can evolve to the life-threatening hemolytic uremic syndrome. Animals are the natural reservoir where this pathogen remains asymptomatically, in steps of ingestion and colonization of the bowel. The bacterium is shed in the feces, contaminating the surroundings, including water and food that are directed for human consumption. A major player in this colonization process is intimin, an outer membrane adhesion molecule encoded by the E. coli attachment and effacement (eae) gene that has been shown to be essential for intimate bacterial attachment to eukaryotic host cells. In an attempt to reduce the colonization of animal reservoirs with EHEC O157:H7, we designed a vaccine model to induce an immune response against intimin gamma. The model is based on its recombinant expression in attenuated Salmonella, used as a suitable vaccine vector because of its recognized ability to deliver recombinant antigens and to elicit all forms of immunity: mucosal, systemic, and humoral responses. To test this model, mice were orally immunized with a S. enterica serovar Typhimurium strain carrying the pYA3137eaeA vector, and challenged with E. coli O157:H7. Here we show that immunization induced the production of high levels of specific IgG and IgA antibodies and promoted reduction in the fecal shedding of EHEC after challenge. The live recombinant vaccine reported herein may contribute to the efforts of reducing animal intestinal mucosa colonization.
Resumo:
This PhD thesis is focused on cold atmospheric plasma treatments (GP) for microbial inactivation in food applications. In fact GP represents a promising emerging technology alternative to the traditional methods for the decontamination of foods. The objectives of this work were to evaluate: - the effects of GP treatments on microbial inactivation in model systems and in real foods; - the stress response in L. monocytogenes following exposure to different GP treatments. As far as the first aspect, inactivation curves were obtained for some target pathogens, i.e. Listeria monocytogenes and Escherichia coli, by exposing microbial cells to GP generated with two different DBD equipments and processing conditions (exposure time, material of the electrodes). Concerning food applications, the effects of different GP treatments on the inactivation of natural microflora and Listeria monocytogenes, Salmonella Enteritidis and Escherichia coli on the surface of Fuji apples, soya sprouts and black pepper were evaluated. In particular the efficacy of the exposure to gas plasma was assessed immediately after treatments and during storage. Moreover, also possible changes in quality parameters such as colour, pH, Aw, moisture content, oxidation, polyphenol-oxidase activity, antioxidant activity were investigated. Since the lack of knowledge of cell targets of GP may limit its application, the possible mechanism of action of GP was studied against 2 strains of Listeria monocytogenes by evaluating modifications in the fatty acids of the cytoplasmic membrane (through GC/MS analysis) and metabolites detected by SPME-GC/MS and 1H-NMR analyses. Moreover, changes induced by different treatments on the expression of selected genes related to general stress response, virulence or to the metabolism were detected with Reverse Transcription-qPCR. In collaboration with the Scripps Research Institute (La Jolla, CA, USA) also proteomic profiles following gas plasma exposure were analysed through Multidimensional Protein Identification Technology (MudPIT) to evaluate possible changes in metabolic processes.
Resumo:
The blaESBL and blaAmpC genes in Enterobacteriaceae are spread by plasmid-mediated integrons, insertion sequences, and transposons, some of which are homologous in bacteria from food animals, foods, and humans. These genes have been frequently identified in Escherichia coli and Salmonella from food animals, the most common being blaCTX-M-1, blaCTX-M-14, and blaCMY-2. Identification of risk factors for their occurrence in food animals is complex. In addition to generic antimicrobial use, cephalosporin usage is an important risk factor for selection and spread of these genes. Extensive international trade of animals is a further risk factor. There are no data on the effectiveness of individual control options in reducing public health risks. A highly effective option would be to stop or restrict cephalosporin usage in food animals. Decreasing total antimicrobial use is also of high priority. Implementation of measures to limit strain dissemination (increasing farm biosecurity, controls in animal trade, and other general postharvest controls) are also important.
Resumo:
Campylobacter spp., Salmonella enterica, and Yersinia enterocolitica are common causes of foodborne infections in humans with pork as a potential source. Monitoring programs at farm level are, to date, only implemented for S. enterica, while epidemiological knowledge of the other two pathogens is still lacking. This study aimed to assess the pathogen load (in the pigs' environment) in fattening pig herds, their simultaneous occurrence, and the occurrence of Campylobacter spp. and Y. enterocolitica in herds in different Salmonella risk categories. In 50 fattening pig herds in northern Germany, four pooled fecal samples and 10 swab samples from the pigs' direct environment (pen walls, nipple drinkers), indirect environment (hallways, drive boards), and flies and rodent droppings were collected from each herd and submitted for cultural examination. Campylobacter spp. were detected in 38.1% of fecal, 32.7% of direct environment, 5.3% of indirect environment, and 4.6% of flies/pests samples collected, and Y. enterocolitica in 17.1, 8.1, 1.2, and 3.1% and S. enterica in 11.2, 7.7, 4.1, and 1.5%, respectively. For Campylobacter spp., Y. enterocolitica, and S. enterica, 80, 48, and 32% of herds were positive, respectively; 22 herds were positive for both Campylobacter spp. and Y. enterocolitica, 12 for Campylobacter spp. and S. enterica, and 7 for Y. enterocolitica and S. enterica. There was no significant association between the pathogens at herd level. Campylobacter spp. and Y. enterocolitica were found more often in samples from the low Salmonella risk category (odds ratio, 0.51; confidence interval, 0.36 to 0.73, and 0.3, 0.17 to 0.57), and this was also the case for Y. enterocolitica at herd level (odds ratio, 0.08; confidence interval, 0.02 to 0.3). This study provides evidence that the pigs' environment should be accounted for when implementing control measures on farms against Campylobacter spp. and Y. enterocolitica. An extrapolation from the current Salmonella monitoring to the other two pathogens does not seem feasible.
Resumo:
For 21 strains of Salmonella enterica, nucleotide sequences were obtained for three invasion genes, spaO, spaP, and spaQ, of the chromosomal inv/spa complex, the products of which form a protein export system required for entry of the bacteria into nonphagocytic host cells. These genes are present in all eight subspecies of the salmonellae, and homologues occur in a variety of other bacteria, including the enteric pathogens Shigella and Yersinia, in which they are plasmid borne. Evolutionary diversification of the invasion genes among the subspecies of S. enterica has been generally similar in pattern and average rate to that of housekeeping genes. However, the range of variation in evolutionary rate among the invasion genes is unusually large, and there is a relationship between the evolutionary rate and cellular location of the invasion proteins, possibly reflecting diversifying selection on exported proteins in adaptation to variable host factors in extracellular environments. The SpaO protein, which is hypervariable in S. enterica and exhibits only 24% sequence identity with its homologues in Shigella and Yersinia, is secreted. In contrast, the membrane-associated proteins SpaP, SpaQ, and InvA are weakly polymorphic and have > 60% sequence identity with the corresponding proteins of other enteric bacteria. Acquisition of the inv/spa genes may have been a key event in the evolution of the salmonellae as pathogens, following which the invention of flagellar phase shifting facilitated niche expansion to include warm-blooded vertebrates.
Resumo:
Salmonella sp. é um dos principais microrganismos causadores de surtos de enfermidades transmitidas por alimentos associados ao consumo de ovos e de alimentos formulados com este ingrediente. Ovos desidratados são largamente utilizados pelas indústrias de alimentos, por oferecer maior praticidade e maior padronização em relação ao produto \"in natura\". Apesar do processo tecnológico de desidratação do ovo incluir uma etapa de pasteurização, existe um risco de haver microrganismos sobreviventes, já que a pasteurização é feita em temperatura branda. Além disso, a pasteurização pode destruir os fatores intrínsecos antimicrobianos presentes na clara, possibilitando a multiplicação de microrganismos que sobreviveram ao processo de pasteurização ou que contaminaram o produto após a pasteurização. O controle da Aa do produto desidratado e o tempo de armazenamento são, portanto, fatores fundamentais para o controle da multiplicação de microrganismos indesejáveis. Nesse estudo, avaliou-se a cinética de multiplicação de Salmonella experimentalmente adicionada a ovo em pó Aa ajustada para 0,4, 0,6, 0,8 e 0,9, durante o armazenamento em quatro temperaturas: 8°C, 15°C, 25°C e 35°C. Os resultados indicaram que S. Enteritidis é capaz de sobreviver por longo tempo (pelo menos 56 dias) em ovo em pó com Aa próximo de 0,4 quando armazenado a 8°C, 15° e a 25°C. Essa sobrevivência é menor (até 28 dias) quando o armazenamento é feito a 35°C. No ovo em pó com Aa em tomo de 0,6 ou 0,8, S. Enteritidis sobrevive por menos tempo do que no produto com Aa de cerca de 0,4, independentemente da temperatura de armazenamento. No produto com Aa de cerca de 0,9, há grande multiplicação de S. Enteritidis quando o armazenamento é feito a 15°C, 25°C ou 35°C. Nesse produto, o armazenamento a 8°C impede a multiplicação do patógeno. Verificou-se também que Salmonella Radar, resistente a diversos antibióticos, apresentou o mesmo comportamento que S. Enteritidis nas amostras de ovo estudadas.
Resumo:
Aims: A survey to determine the prevalence and numbers of Salmonella in beef cattle presented for slaughter at abattoirs across Australia was conducted between September 2002 and January 2003. Methods and Results: Automated immunomagnetic separation (AIMS) was used for detection and isolation of Salmonella enriched from cattle faeces. Salmonella were enumerated from positive samples using a combination of the Most Probable Number (MPN) technique and AIMS. A total of 310 faecal samples were tested, 155 were from lot-fed cattle and 155 from grass-fed cattle. Salmonella spp. were isolated from 21 (6.8%) of the cattle and the prevalence amongst grass-fed cattle (4.5%) was not significantly different to that found in lot-fed cattle (9%). Counts of Salmonella in positive faeces varied from
Resumo:
The antibacterial activities of water, ethanol and hexane extracts of five Australian herbs (Backhousia citriodora, Anetholea anisata, Eucalyptus staigerana, Eu. olida and Prostanthera incisa) against seven food-related bacteria (Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella Enteritidis, Sal. Typhimurium and Staphylococcus aureus) were determined by the microtitre broth microdilution assay. The water extracts of all the herbs displayed no or low antimicrobial activity against all of the bacteria tested with the exception of S. aureus. Relatively high levels of activity (minimum inhibitory concentrations of 125-15.6 mu g ml(-1)) against this pathogen were present in water extracts from all herbs except P. incisa. The ethanol and hexane extracts of all herbs displayed some activity against a number of the bacteria tested, with no one particular herb displaying an obviously higher level or range of activity. Staphylococcus aureus proved to be the most sensitive of the bacteria tested against the solvent extracts with all extracts displaying activity ranging from 125 to 7.8 mu g ml(-1), while E. coli and L. monocytogenes, on the other hand, proved the least sensitive with only five of 15 herb/extract combinations displaying any activity against these pathogens. The extracts of the Australian native herbs examined in this study have potential for application in foods to increase shelf-life or promote safety. (c) 2005 Elsevier Ltd. All rights reserved.
Long-term persistence of multi-drug-resistant Salmonella enterica serovar Newport in two dairy herds
Resumo:
Objective - To evaluate the association between maintaining joint hospital and maternity pens;and persistence of multi-drug-resistant (MDR) Salmonella enterica serovar Newport on 2 dairy farms. Design - Observational study. Sample Population - Feces and environmental samples from 2 dairy herds. Procedure - Herds were monitored for fecal shedding of S enterica Newport after outbreaks of clinical disease. Fecal and environmental samples were collected approximately monthly from pens housing sick cows and calving cows and from pens containing lactating cows. Cattle shedding the organism were tested serially on subsequent visits to determine carrier status. One farm was resampled after initiation of interventional procedures, including separation of hospital and maternity pens. Isolates were characterized via serotyping, determination of antimicrobial resistance phenotype, detection of the CMY-2 gene, and DNA fingerprinting. Results - The prevalence (32.4% and 33.3% on farms A and B, respectively) of isolating Salmonella from samples from joint hospital-maternity pens was significantly higher than the prevalence in samples from pens housing preparturient cows (0.8%, both farms) and postparturient cows on Farm B (8.8%). Multi-drug-resistant Salmonella Newport was isolated in high numbers from bedding material, feed refusals, lagoon slurry, and milk filters. One cow excreted the organism for 190 days. Interventional procedures yielded significant reductions in the prevalences of isolating the organism from fecal and environmental samples. Most isolates were of the C2 serogroup and were resistant to third-generation cephalosporins. Conclusions and Clinical Relevance - Management practices may be effective at reducing the persistence of MDR Salmonella spp in dairy herds, thus mitigating animal and public health risk.