864 resultados para Euler discretization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finite element analysis (FEA) utilizing models with different levels of complexity are found in the literature to study the tendency to vertical root fracture caused by post intrusion (""wedge effect""). The objective of this investigation was to verify if some simplifications used in bi-dimensional FEA models are acceptable regarding the analysis of stresses caused by wedge effect. Three plane strain (PS) and two axisymmtric (Axi) models were studied. One PS model represented the apical third of the root entirely, in dentin (PS-nG). The other models included gutta-percha in the apical third, and differed regarding dentin-post relationship: bonded (PS-B and Axi-B) or nonbonded (PS-nB and Axi-nB). Mesh discretization and material properties were similar for all cases. Maximum principal stress (sigma(max)) was analyzed as a response to a 165 N longitudinal load. Stress magnitude and orientation varied widely (PS-nG: 10.3 MPa; PS-B: 0.8 MPa; PS-nB: 10.4 MPa; Axi-13: 0.2 MPa, Axi-nB: 10.8 MPa). Axi-nB was the only model where all (sigma(max) vectors at the apical third were perpendicular to the model plane. Therefore, it is adequate to demonstrate the tendency to vertical root fractures caused by wedge effect. Axi-13 showed only part of the (sigma(max) perpendicular to the model plane while PS models showed sigma(max) on the model plane. In these models, sigma(max) orientation did not represent a situation where vertical root fracture would occur due to wedge effect. Adhesion between post and dentin significantly reduced (c) 2007 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we discuss implicit Taylor methods for stiff Ito stochastic differential equations. Based on the relationship between Ito stochastic integrals and backward stochastic integrals, we introduce three implicit Taylor methods: the implicit Euler-Taylor method with strong order 0.5, the implicit Milstein-Taylor method with strong order 1.0 and the implicit Taylor method with strong order 1.5. The mean-square stability properties of the implicit Euler-Taylor and Milstein-Taylor methods are much better than those of the corresponding semi-implicit Euler and Milstein methods and these two implicit methods can be used to solve stochastic differential equations which are stiff in both the deterministic and the stochastic components. Numerical results are reported to show the convergence properties and the stability properties of these three implicit Taylor methods. The stability analysis and numerical results show that the implicit Euler-Taylor and Milstein-Taylor methods are very promising methods for stiff stochastic differential equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For a two layered long wave propagation, linearized governing equations, which were derived earlier from the Euler equations of mass and momentum assuming negligible friction and interfacial mixing are solved analytically using Fourier transform. For the solution, variations of upper layer water level is assumed to be sinosoidal having known amplitude and variations of interface level is solved. As the governing equations are too complex to solve it analytically, density of upper layer fluid is assumed as very close to the density of lower layer fluid to simplify the lower layer equation. A numerical model is developed using the staggered leap-forg scheme for computation of water level and discharge in one dimensional propagation having known amplitude for the variations of upper layer water level and interface level to be solved. For the numerical model, water levels (upper layer and interface) at both the boundaries are assumed to be known from analytical solution. Results of numerical model are verified by comparing with the analytical solutions for different time period. Good agreements between analytical solution and numerical model are found for the stated boundary condition. The reliability of the developed numerical model is discussed, using it for different a (ratio of density of fluid in the upper layer to that in the lower layer) and p (ratio of water depth in the lower layer to that in the upper layer) values. It is found that as ‘CX’ increases amplification of interface also increases for same upper layer amplitude. Again for a constant lower layer depth, as ‘p’ increases amplification of interface. also increases for same upper layer amplitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new wavelet-based method for solving population balance equations with simultaneous nucleation, growth and agglomeration is proposed, which uses wavelets to express the functions. The technique is very general, powerful and overcomes the crucial problems of numerical diffusion and stability that often characterize previous techniques in this area. It is also applicable to an arbitrary grid to control resolution and computational efficiency. The proposed technique has been tested for pure agglomeration, simultaneous nucleation and growth, and simultaneous growth and agglomeration. In all cases, the predicted and analytical particle size distributions are in excellent agreement. The presence of moving sharp fronts can be addressed without the prior investigation of the characteristics of the processes. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In computer simulations of smooth dynamical systems, the original phase space is replaced by machine arithmetic, which is a finite set. The resulting spatially discretized dynamical systems do not inherit all functional properties of the original systems, such as surjectivity and existence of absolutely continuous invariant measures. This can lead to computational collapse to fixed points or short cycles. The paper studies loss of such properties in spatial discretizations of dynamical systems induced by unimodal mappings of the unit interval. The problem reduces to studying set-valued negative semitrajectories of the discretized system. As the grid is refined, the asymptotic behavior of the cardinality structure of the semitrajectories follows probabilistic laws corresponding to a branching process. The transition probabilities of this process are explicitly calculated. These results are illustrated by the example of the discretized logistic mapping.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new wavelet-based adaptive framework for solving population balance equations (PBEs) is proposed in this work. The technique is general, powerful and efficient without the need for prior assumptions about the characteristics of the processes. Because there are steeply varying number densities across a size range, a new strategy is developed to select the optimal order of resolution and the collocation points based on an interpolating wavelet transform (IWT). The proposed technique has been tested for size-independent agglomeration, agglomeration with a linear summation kernel and agglomeration with a nonlinear kernel. In all cases, the predicted and analytical particle size distributions (PSDs) are in excellent agreement. Further work on the solution of the general population balance equations with nucleation, growth and agglomeration and the solution of steady-state population balance equations will be presented in this framework. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Utiliza-se o método coordenada geradora Hartree-Fock para gerar bases Gaussianas adaptadas para os átomos de Li (Z=3) até Xe (Z=54). Neste método, integram-se as equações de Griffin-Hill-Wheeler-Hartree-Fock através da técnica de discretização integral. Comparam-se as funções de ondas geradas neste trabalho com as funções de ondas Roothaan-Hartree-Fock de Clementi e Roetti (1974) e com outros conjuntos de bases relatados na literatura. Para os átomos estudados aqui, os erros em nossas energias totais relativos aos limites numéricos Hartree-Fock são sempre menores que 7,426 milihartree.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2007.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we consider the numerical solution of a large eigenvalue problem resulting from a finite rank discretization of an integral operator. We are interested in computing a few eigenpairs, with an iterative method, so a matrix representation that allows for fast matrix-vector products is required. Hierarchical matrices are appropriate for this setting, and also provide cheap LU decompositions required in the spectral transformation technique. We illustrate the use of freely available software tools to address the problem, in particular SLEPc for the eigensolvers and HLib for the construction of H-matrices. The numerical tests are performed using an astrophysics application. Results show the benefits of the data-sparse representation compared to standard storage schemes, in terms of computational cost as well as memory requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hierarchical matrix is an efficient data-sparse representation of a matrix, especially useful for large dimensional problems. It consists of low-rank subblocks leading to low memory requirements as well as inexpensive computational costs. In this work, we discuss the use of the hierarchical matrix technique in the numerical solution of a large scale eigenvalue problem arising from a finite rank discretization of an integral operator. The operator is of convolution type, it is defined through the first exponential-integral function and, hence, it is weakly singular. We develop analytical expressions for the approximate degenerate kernels and deduce error upper bounds for these approximations. Some computational results illustrating the efficiency and robustness of the approach are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Equipamentos rotativos podem ser encarados como vigas em apoios elásticos suportando um número finito de elementos concentrados ao longo do seu comprimento. Em operação, este tipo de equipamento pode ser exposto a solicitações dinâmicas severas. Com a finalidade de evitar regimes críticos, os autores propõem um algoritmo baseado no Quociente de Rayleigh, utilizando ateoria das vigas de Bernoulli-Euler. Este algoritmo permite a determinação das soluções próprias de vigas contínuas, considerando diversas condições de fronteira e o efeito da massa concentrada e inércia de rotação dos elementos suportados. Tentando reproduzir as configurações de sistemasreais são usadas diferentes condições de fronteira na formulação da teoria das vigas de Bernoulli- Euler. Salienta-se o facto dos dados analíticos serem experimentalmente verificados através de ensaios de impacto, sendo por sua vez utilizados como entradas do algoritmo de modelação, para a identificação da rigidez torsional dos apoios. Os resultados são discutidos e comparados,sempre que apropriado, com resultados já publicados. Finalmente, o trabalho futuro é delineado.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nesta dissertação pretende-se simular o comportamento dinâmico de uma laje de betão armado aplicando o Método de Elementos Finitos através da sua implementação no programa FreeFEM++. Este programa permite-nos a análise do modelo matemático tridimensional da Teoria da Elasticidade Linear, englobando a Equação de Equilíbrio, Equação de Compatibilidade e Relações Constitutivas. Tratando-se de um problema dinâmico é necessário recorrer a métodos numéricos de Integração Directa de modo a obter a resposta em termos de deslocamento ao longo do tempo. Para este trabalho escolhemos o Método de Newmark e o Método de Euler para a discretização temporal, um pela sua popularidade e o outro pela sua simplicidade de implementação. Os resultados obtidos pelo FreeFEM++ são validados através da comparação com resultados adquiridos a partir do SAP2000 e de Soluções Teóricas, quando possível.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[...]. Historicamente falando, atribui-se a John Napier (Neper) a descoberta deste número no século XVII (que mais tarde passou a ser conhecido pelo seu nome). Mas só cerca de um século depois, com o desenvolvimento do cálculo infi nitesimal, Euler reconheceu a importância deste número. O símbolo e que é usado para designar este número foi escolhido em homenagem a Euler. [...].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(...) Recentemente, em 2004, H. Michael Damm provou na sua tese de doutoramento a existência de quase-grupos totalmente anti-simétricos para ordens diferentes de 2 e 6. A tabela da imagem define um quase-grupo totalmente anti-simétrico de ordem 10, adaptado de um exemplo apresentado por Damm na sua tese. Esta tabela é o que se designa por quadrado latino: em cada linha e em cada coluna, cada um dos símbolos utilizados devem figurar uma e uma só vez. Os quadrados latinos surgiram pelas mãos de um grande matemático, talvez o maior matemático de todos os tempos: Leonhard Euler (1707-1783). Este tipo de tabelas não é totalmente estranho ao leitor. Se olhar com atenção, encontrará apenas duas diferenças em relação aos tradicionais desafios de Sudoku: não existem as chamadas "regiões" e utiliza-se o 0, para além dos algarismos 1-9. A descoberta de Damm impulsionou o desenvolvimento de um novo algoritmo com o seu nome, que tem a vantagem de apenas utilizar os algarismos tradicionais, do 0 ao 9, e de detetar 100% dos erros singulares e 100% das transposições de algarismos adjacentes. Em relação ao algoritmo de Verhoeff, tem uma implementação mais simples e deteta 100% dos erros fonéticos (por exemplo, quando se escreve 15 em vez de 50, devido à pronúncia semelhante destes números em inglês: "fifteen" e "fifty"). Na imagem, ilustra-se um exemplo de aplicação deste algoritmo para determinar o algarismo de controlo do número 201436571? (o ponto de interrogação representa o algarismo de controlo, por enquanto, desconhecido). (...)