976 resultados para Escherichia coli expression
Resumo:
Das Elektronentransportsystem von E. coli enthält zwei verschiedene NADH-Dehydrogenasen. Die NADH-DehydrogenaseI (nuoA-N) koppelt im Gegensatz zur NADH-DehydrogenaseII die Oxidation von NADH an eine Protonentranslokation und trägt zur Energiekonservierung bei. Die NADH-DehydrogenaseI wird über die Promotoren P1 und P2 exprimiert und besitzt mehrere Bindestellen für verschiedene Regulatoren.Die separate Klonierung der Promotoren, lacZ-Fusionen, Inaktivierung von Transkriptionsfaktoren, sowie die Nutzung mutierter Regulatorbindestellen in vivo zeigen, dass P1 im wesentlichen die Expressionshöhe bestimmt und ist unter aeroben und anaeroben Bedingungen aktiv. P2 trägt in wesentlich geringerem Maße als P1 zur Expression des Enzyms bei. Er ist stark abhängig von ArcA und IHF. Beide Promotoren wirken nicht additiv.Unter anaeroben Bedingungen wird die Transkription von nuo durch das Zweikomponenten-System ArcB/A reprimiert. ArcA bindet unabhängig und mit unterschiedlicher Affinität an die beiden Bindestellen arc1 und arc2. Von den 8 ArcA-Konsensussequenzen führen nur Mutationen der Konsensussequenzen arc1ab in vitro zu verminderter Bindungsaffinität von ArcA an die Bindestelle arc1. Dieselben führen in vivo unter anaeroben Bedingungen zur Derepression des Promotors P1 bzw. P1+P2. Unter aeroben Bedingungen zeigen nur Mutationen in arc2 eine Derepression, die nicht durch ArcA vermittelt wird. Der veröffentliche ArcA-Konsensus scheint deshalb hier in dieser einfachen Form nicht gültig zu sein.
Resumo:
Das Zweikomponentensystem DcuSR reguliert die Expression der Gene der anaeroben Fumaratatmung in E. coli in Abhängigkeit von externen C4-Dicarbonsäuren. Die membranständige Histidinkinase DcuS detektiert den Reiz und leitet ihn über die Membran an den Responseregulaor DcuR weiter, der die Aktivität der Zielgene reguliert. Das Substratspektrum von DcuS wurde näher untersucht und strukturelle Eigenschaften der Substrate sowie ihre Affinität zu DcuS bestimmt. Es wird vermutet, dass Histidinkinasen im aktiven Zustand als Dimere oder höhere Oligomere vorliegen. Der Oligomerisierungszustand von DcuS in der Membran wurde mittels EPR-Spektroskopie untersucht. Es wurden funktionelle Cysteinmutanten von DcuS hergestellt, die nur an bestimmten Positionen der periplasmatischen Domäne Cysteinreste, aber sonst keine weiteren Cysteinreste, enthielten. Die Proteine wurden isoliert, über die Cysteinreste mit Nitroxiden markiert und in Liposomen rekonstituiert. Erste EPR-Messungen zeigten, dass rekonstituiertes DcuS in einem geordneten Zustand in der Membran vorliegt, der diskrete Abstände zwischen den Monomeren aufweist. Die Struktur von rekonstituiertem DcuS in der Membran soll durch Festkörper-NMR aufgeklärt werden. Ein geeignetes C-terminal verkürztes Konstrukt, DcuS-PD/PAS wurde zu diesem Zweck hergestellt. Das Protein ließ sich in hoher Reinheit isolieren und konnte wieder in Liposomen rekonstituiert werden. Vorbereitende NMR-Messungen zeigten, dass eine Strukturaufklärung an diesem Protein möglich ist. Weitere Strukturuntersuchungen werden zur Zeit durchgeführt.
Resumo:
In E. coli dient L-Tartrat als Elektronenakzeptor während des anaeroben Wachstums und wird schließlich zu Succinat umgesetzt. Der sekundäre Carrier TtdT (YgjE) von E. coli ist ein Antiporter, der die Aufnahme von L-Tartrat im elektroneutralen Austausch gegen intrazelluläres Succinat katalysiert. TtdT besitzt eine hohe Substratspezifität und katalysiert den Transport von L-Tartrat und Succinat, nicht aber von meso- und D-Tartrat. Das Gen ttdT (ygjE) bildet mit den Genen ttdA und ttdB, welche für die L-Tartratdehydratase kodieren, ein Operon. Das benachbarte Gen ttdR (ygiP) kodiert für TtdR (YgiP), einen Tartrat-spezifischen Regulator vom LysR-Typ. TtdR reguliert die L-Tartratfermentation direkt durch Induktion des ttdABT-Operons und durch Autoregulation. TtdR stellt damit den Tartrat-spezifischen Regulator dar, der auf die Expression des ttdR ttdABT-Genclusters spezialisiert ist. Dagegen reguliert DcuSR, das Zweikomponentensystem für C4-Dicarboxylate, die L-Tartratfermentation indirekt durch die Regulation der Gene für die Fumaratatmung. YfaV und YeaV sind weitere potentielle Tartrattransporter. YfaV katalysiert vermutlich den Transport von C4-Dicarboxylaten, einschließlich Tartrat, unter aeroben und anaeroben Bedingungen. YeaV wird nur in Anwesenheit von L- und meso-Tartrat und unter aeroben Bedingungen gebildet. Die yeaUVWX-Gene unterliegen der trankriptionellen Regulation durch YeaT, dessen Gen yeaT vor yeaU liegt. YeaT ist wie TtdR ein Tartrat-spezifischer Regulator und besitzt eine signifikante Ähnlichkeit zu TtdR.
Resumo:
Escherichia coli kann C4-Dicarboxylate und andere Carbonsäuren als Substrate für den aeroben und anaeroben Stoffwechsel nutzen. Die Anwesenheit von C4-Dicarboxylaten im Außenmedium wird über das Zweikomponentensystem DcuSR, bestehend aus der membranständigen Sensorkinase DcuS und dem cytoplasmatischen Responseregulator DcuR, erkannt. Die Bindung von C4-Dicarboxylaten an die periplasmatische Domäne von DcuS führt zu einer Induktion der Zielgene. Hierzu zählen die Gene für den anaeroben Fumarat/Succinat-Antiporter DcuB (dcuB), die anaerobe Fumarase (fumB) und die Fumaratreduktase (frdABCD). Unter aeroben Bedingungen stimuliert DcuSR die Expression des dctA Gens, das für den aeroben C4-Dicarboxylat-Carrier DctA kodiert. Für den Carrier DcuB konnte eine regulatorische Funktion bei der Expression der DcuSR-regulierten Gene gezeigt werden. Die Inaktivierung des dcuB Gens führte bereits ohne Fumarat zu einer maximalen Expression einer dcuB´-´lacZ Reportergenfusion und anderer DcuSR-abhängiger Gene. Diese Stimulierung erfolgte nur in einem dcuS-positiven Hintergrund. DcuB unterscheidet sich damit von den alternativen Carriern DcuA und DcuC, die diesen Effekt nicht zeigten. Mithilfe ungerichteter Mutagenese wurden DcuB-Punktmutanten hergestellt (Thr394Ile und Asp398Asn), die eine Geninduktion verursachten, aber eine intakte Transportfunktion besaßen. Dies zeigt, dass der regulatorische Effekt von DcuB unabhängig von dessen Transportfunktion ist. Durch gerichtete Mutagenese wurde die Funktion einer Punktmutation (Thr394) näher charakterisiert. Es werden zwei Modelle zur Membrantopologie von DcuB und der Lage der Punktmutationen im Protein vorgestellt. Da DcuB seine regulatorische Funktion über eine Interaktion mit DcuS vermitteln könnte, wurden mögliche Wechselwirkungen zwischen DcuB und DcuS als auch DcuR mithilfe von Two-Hybrid-Systemen untersucht. Für biochemische Untersuchungen von DcuB wurde außerdem die Expression des Proteins in vivo und in vitro versucht. Unter aeroben Bedingungen beeinflusst der C4-Dicarboxylat-Carrier DctA die Expression der DcuSR-abhängigen Gene. Eine Mutation des dctA Gens bewirkte eine stärkere Expression einer dctA´-´lacZ Reportergenfusion im Vergleich zum Wildtyp. Diese Expression nahm in einem dcuS-negativen Hintergrund ab, die Succinat-abhängige Induktion blieb jedoch erhalten. Unter anaeroben Bedingungen kann das dctA Gen auch durch Inaktivierung von DcuB induziert werden. Es wird ein Modell vorgestellt, das die Beteiligung beider Carrier an der DcuSR-abhängigen Regulation erklärt.
Resumo:
Il core catalitico della DNA polimerasi III, composto dalle tre subunità α, ε e θ, è il complesso minimo responsabile della replicazione del DNA cromosomiale in Escherichia coli. Nell'oloenzima, α ed ε possiedono rispettivamente un'attività 5'-3' polimerasica ed un'attività 3'-5' esonucleasica, mentre θ non ha funzioni enzimatiche. Il presente studio si è concentrato sulle regioni del core che interagiscono direttamente con ε, ovvero θ (interagente all'estremità N-terminale di ε) e il dominio PHP di α (interagente all'estremità C-terminale di ε), delle quali non è stato sinora identificato il ruolo. Al fine di assegnare loro una funzione sono state seguite tre linee di ricerca parallele. Innanzitutto il ruolo di θ è stato studiato utilizzando approcci ex-vivo ed in vivo. I risultati presentati in questo studio mostrano che θ incrementa significativamente la stabilità della subunità ε, intrinsecamente labile. Durante gli esperimenti condotti è stata anche identificata una nuova forma dimerica di ε. Per quanto la funzione del dimero non sia definita, si è dimostrato che esso è attivamente dissociato da θ, che potrebbe quindi fungere da suo regolatore. Inoltre, è stato ritrovato e caratterizzato il primo fenotipo di θ associato alla crescita. Per quanto concerne il dominio PHP, si è dimostrato che esso possiede un'attività pirofosfatasica utilizzando un nuovo saggio, progettato per seguire le cinetiche di reazione catalizzate da enzimi rilascianti fosfato o pirofosfato. L'idrolisi del pirofosfato catalizzata dal PHP è stata dimostrata in grado di sostenere l'attività polimerasica di α in vitro, il che suggerisce il suo possibile ruolo in vivo durante la replicazione del DNA. Infine, è stata messa a punto una nuova procedura per la coespressione e purificazione del complesso α-ε-θ
Resumo:
Das Zweikomponentensystem DcuSR aus Escherichia coli reguliert in Abhängigkeit von C4-Dicarboxylaten die Expression der Gene der Fumaratatmung. Die Erkennung von C4-Dicarboxylaten erfolgt über die periplasmatische Domäne der Sensorkinase DcuS und führt zur Autophosphorylierung des konservierten Histidinrestes in der Kinasedomäne. Die Phosphatgruppe wird anschließend auf den Responseregulator DcuR übertragen und führt zur Induktion der Zielgene. Dazu gehören der Antiporter DcuB (dcuB), die anaerobe Fumarase B (fumB) und die Fumaratreduktase (frdABCD). DcuS detektiert neben C4-Dicarboxylaten auch Citrat über die periplasmatische Domäne. In dem nah verwandten Sensor CitA wird Citrat spezifisch über die drei Carboxyl- und die Hydroxylgruppe durch die Bindestellen C1, C2, C3 und H erkannt. DcuS benötigt für die Erkennung von C4-Dicarboxylaten und Citrat die gleichen Bindestellen. Die Citratbindung von DcuS ähnelte der von C4-Dicarboxylaten und unterschied sich von der Citraterkennung in CitA. DcuS konnte durch gerichtete Mutagenese der Bindungsstelle in Varianten überführt werden, die spezifisch für C4-Dicarboxylate (DcuSDC) oder Citrat (DcuSCit) waren. DcuSDC und DcuSCit hatten komplementäre Substratspezifitäten und reagierten entweder auf C4-Dicarboxylate oder auf Citrat (und Mesaconat). Citrat wurde vermutlich als C4-Dicarboxylat (mit einem Acetylrest) und somit über die gleichen Bindestellen wie C4-Dicarboxylate erkannt. Die Bindestellen C2 und C3 sind hoch konserviert und essentiell für die Bindung von zwei Carboxylgruppen von Citrat und C4-Dicarboxylaten. Die Stellen C1 und H werden vermutlich für koordinative Zwecke benötigt. Der Fumarat/Succinat-Antiporter DcuB hat neben der Transportaktivität eine regulatorische Aufgabe im DcuSR-System. Die Deletion von DcuB führte zur konstitutiven Expression der dcuB´-´lacZ Reportergenfusion und anderer DcuSR-regulierter Gene in Abwesenheit von C4-Dicarboxylaten. Die Effektor-unabhängige Expression setzte eine intakte periplasmatische Domäne von DcuS voraus und zeigte in Anwesenheit der spezifischen DcuS-Mutanten (DcuSDC, DcuSCit) eine geänderte Antwort. Die lässt vermuten, dass DcuB die regulatorischen Eigenschaften über eine direkte Wechselwirkung mit DcuS ausübt. Um den phosphorylierten Responseregulator DcuR-P in den Ursprungszustand zurückzuführen, muss dieser dephosphoryliert werden. Die bisher unbekannte Dephosphatase kann dabei entweder von dem Responseregulator, der Sensorkinase oder einem weiteren Protein stammen. DcuR verfügt über eine intrinsische Phosphataseaktivität, die durch den Sensor geringfügig stimuliert wurde.
Resumo:
DcuS is a membrane-integral sensory histidine kinase involved in the DcuSR two-component regulatory system in Escherichia coli by regulating the gene expression of C4-dicarboxylate metabolism in response to external stimuli. How DcuS mediates the signal transduction across the membrane remains little understood. This study focused on the oligomerization and protein-protein interactions of DcuS by using quantitative Fluorescence Resonance Energy Transfer (FRET) spectroscopy. A quantitative FRET analysis for fluorescence spectroscopy has been developed in this study, consisting of three steps: (1) flexible background subtraction to yield background-free spectra, (2) a FRET quantification method to determine FRET efficiency (E) and donor fraction (fD = [donor] / ([donor]+[acceptor])) from the spectra, and (3) a model to determine the degree of oligomerization (interaction stoichiometry) in the protein complexes based on E vs. fD. The accuracy and applicability of this analysis was validated by theoretical simulations and experimental systems. These three steps were integrated into a computer procedure as an automatic quantitative FRET analysis which is easy, fast, and allows high-throughout to quantify FRET accurately and robustly, even in living cells. This method was subsequently applied to investigate oligomerization and protein-protein interactions, in particular in living cells. Cyan (CFP) and yellow fluorescent protein (YFP), two spectral variants of green fluorescent protein, were used as a donor-acceptor pair for in vivo measurements. Based on CFP- and YFP-fusions of non-interacting membrane proteins in the cell membrane, a minor FRET signal (E = 0.06 ± 0.01) can be regarded as an estimate of direct interaction between CFP and YFP moieties of fusion proteins co-localized in the cell membrane (false-positive). To confirm if the FRET occurrence is specific to the interaction of the investigated proteins, their FRET efficiency should be clearly above E = 0.06. The oligomeric state of DcuS was examined both in vivo (CFP/YFP) and in vitro (two different donor-acceptor pairs of organic dyes) by three independent experimental systems. The consistent occurrence of FRET in vitro and in vivo provides the evidence for the homo-dimerization of DcuS as full-length protein for the first time. Moreover, novel interactions (hetero-complexes) between DcuS and its functionally related proteins, citrate-specific sensor kinase CitA and aerobic dicarboxylate transporter DctA respectively, have been identified for the first time by intermolecular FRET in vivo. This analysis can be widely applied as a robust method to determine the interaction stoichiometry of protein complexes for other proteins of interest labeled with adequate fluorophores in vitro or in vivo.
Resumo:
The two-component system DcuSR of Escherichia coli regulates gene expression of anaerobic fumarate respiration and aerobic C4-dicarboxylate uptake. C4-dicarboxylates and citrate are perceived by the periplasmic domain of the membrane-integral sensor histidine kinase DcuS. The signal is transduced across the membrane by phosphorylation of DcuS and of the response regulator DcuR, resulting in activation of DcuR and transcription of the target genes.rnIn this work, the oligomerisation of full-length DcuS was studied in vivo and in vitro. DcuS was genetically fused to derivatives of the green fluorescent protein (GFP), enabling fluorescence resonance energy transfer (FRET) measurements to detect protein-protein interactions in vivo. FRET measurements were also performed with purified His6-DcuS after labelling with fluorescent dyes and reconstitution into liposomes to study oligomerisation of DcuS in vitro. In vitro and in vivo fluorescence resonance energy transfer showed the presence of oligomeric DcuS in the membrane, which was independent of the presence of effector. Chemical crosslinking experiments allowed clear-cut evaluation of the oligomeric state of DcuS. The results showed that detergent-solubilised His6-DcuS was mainly monomeric and demonstrated the presence of tetrameric DcuS in proteoliposomes and in bacterial membranes.rnThe sensor histidine kinase CitA is part of the two-component system CitAB of E. coli, which is structurally related to DcuSR. CitAB regulates gene expression of citrate fermentation in response to external citrate. The sensor kinases DcuS and CitA were fused with an enhanced variant of the yellow fluorescent protein (YFP) and expressed in E. coli under the control of an arabinose-inducible promoter. The subcellular localisation of DcuS-YFP and CitA-YFP within the cell membrane was studied by means of confocal laser fluorescence microscopy. Both fusion proteins were found to accumulate at the cell poles. The polar accumulation was slightly increased in the presence of the stimulus fumarate or citrate, respectively, but independent of the expression level of the fusion proteins. Cell fractionation demonstrated that polar accumulation was not related to inclusion bodies formation. The degree of polar localisation of DcuS-YFP was similar to that of the well-characterised methyl-accepting chemotaxis proteins (MCPs), but independent of their presence. To enable further investigations on the function of the polar localisation of DcuS under physiological conditions, the sensor kinase was genetically fused to the flavin-based fluorescent protein Bs2 which shows fluorescence under aerobic and anaerobic conditions. The resulting dcuS-bs2 gene fusion was inserted into the chromosome of various E. coli strains.rnFurthermore, a protein-protein interaction between the related sensor histidine kinases DcuS and CitA, regulating common metabolic pathways, was detected via expression studies under anaerobic conditions in the presence of citrate and by in vivo FRET measurements.
The C-4-Dicarboxylate carriers DcuB and DctA of Escherichia coli: function as cosensors and topology
Resumo:
Das fakultativ anaerobe Enterobakterium Escherichia coli nutzt C4-Dicarboxylate sowohl unter aeroben als auch anaeroben Bedingungen als Kohlenstoff- und Energiequelle. Die Aufnahme der C4-Dicarboxylaten und die Energiekonservierung mittels Fumaratatmung wird durch das Zweikomponentensystem DcuSR reguliert. Die Sensorhistidinkinase DcuS und der nachgeschaltete Responseregulator DcuR aktivieren bei Verfügbarkeit von C4-Dicarboxylaten die Expression der Gene für den Succinat Transporter DctA, den anaeroben Fumarat/Succinat Antiporter DcuB, die Fumarase B sowie die Fumaratreduktase FrdABCD. Die Transportproteine DctA und DcuB wiederum regulieren die Expression der DcuSR-abhängigen Gene negativ. Fehlen von DctA oder DcuB resultiert bereits ohne Effektor in einer maximalen Expression von dctA bzw. dcuB. Durch gerichtete und ungerichtete Mutagenese wurde gezeigt, dass die Transportfunktion des Carriers DcuB unabhängig von seiner regulatorischen Funktion ist. DcuB kann daher als Cosensor des DcuSR Systems angesehen werden.rnUnter Verwendung von Reportergenfusionen von C-terminal verkürzten Konstrukten von DcuB mit der Alkalischen Phosphatase und der β-Galactosidase wurde die Topologie des Multitransmembranproteins DcuB bestimmt. Zusätzlich wurde die Zugänglichkeit bestimmter Aminosäurereste durch chemische Modifikation mit membran-durchlässigen und membran-undurchlässigen Thiolreagenzien untersucht. Die erhaltenen Ergebnisse deuten auf die Existenz eines tief in die Membran reichenden, hydrophilen Kanal hin, welcher zum Periplasma hin geöffnet ist. Mit Hilfe der Topologie-Studien, des Hydropathie-Blots und der Sekundärstruktur-Vorhersage wurde ein Modell des Carriers erstellt. DcuB besitzt kurze, periplasmatisch liegende Proteinenden, die durch 12 Transmembranhelices und zwei große hydrophile Schleifen jeweils zwischen TM VII/VIII und TM XI/XII verbunden sind. Die regulatorisch relevanten Reste K353, T396 und D398 befinden sich innerhalb von TM XI sowie auf der angrenzenden cytoplasmatischen Schleife XI-XII. Unter Berücksichtigung der strukturellen und funktionellen Aspekte wurde ein Regulationsmodell erstellt, welches die gemeinsam durch DcuB und DcuS kontrollierte C4-Dicarboxylat-abhängige Genexpression darstellt. rnDer Effekt von DctA und DcuSR auf die Expression einer dctA´-´lacZ Reportergenfusion und auf die aerobe C4-Dicarboxylat-Aufnahme wurde untersucht. In-vivo FRET-Messungen weisen auf eine direkte Wechselwirkung zwischen dem Carrier DctA und dem Sensor DcuS hin. Dieses Ergebnis stützt die Theorie der Regulation von DcuS durch C4-Dicarboxylate und durch die Cosensoren DctA bzw. DcuB mittels direkter Protein-Protein Interaktion.rn
Resumo:
Im Laufe der Evolution entwickelte sich eine Reihe von Sauerstoff-Sensorsystemen in Bakterien, um die Genexpression der Sauerstoffverfügbarkeit anzupassen. Der Sauerstoffsensor FNR aus Escherichia coli bindet unter anaeroben Bedingungen ein [4Fe4S]2+ Zentrum. Unter Sauerstoffeinfluß zerfällt aktives [4Fe4S]2+FNR zu inaktivem [2Fe2S]2+FNR und weiter zu ebenfalls inaktivem apoFNR. In der vorliegenden Arbeit wurde der Zustand von FNR in vivo in aeroben und anaeroben Zellen von Escherichia coli aufgeklärt. Durch Alkylierung der Cysteine in FNR und anschließender Analyse im Massenspektrometer konnte gezeigt werden, das FNR in aeroben Zellen hauptsächlich in der apo-Form vorliegt. Nach ca. 6 Minuten war in lebenden E. coli Zellen die Umwandlung von [4Fe4S]2+ FNR zu apoFNR abgeschlossen.rnrnIn dem gram positiven Bakterium Staphylococcus carnosus aktiviert das NreBC System unter anaeroben Wachstumsbedingungen die Gene der Nitratatmung. NreB ist eine cytoplasmatische Sensorhistidinkinase, die ein sauerstofflabiles [4Fe4S]2+ Zentrum über eine PAS-Domäne bindet. Das [4Fe4S]2+ Zentrum wird von vier Cysteinen gebunden. Der Responsregulator NreC steuert nach Aktivierung durch NreB die Transkription der Zielgene. In der vorliegenden Arbeit wurde NreB mit Hilfe von Cysteinmarkierungen in vivo charakterisiert. Durch die Änderung der Cystein-Zugänglichkeit für Thiolreagenzien nach Sauerstoffzugabe konnte eine Halbwertszeit von ca. 3 Minuten für das [4Fe4S]2+ Zentrum in vivo bestimmt werden. In anaeroben Bakterien stellt [4Fe4S]2+NreB die Hauptform von NreB dar, während in aeroben Bakterien hauptsächlich apoNreB vorkommt. Dieses Ergebnis konnte durch Massenspektroskopie bestätigt werden. Weiterhin konnte gezeigt werden das NreA mit NreB und NreC wechselwirkt und Bestandteil des NreABC Drei-Komponentensystems ist. rn
Funktion der C 4-Dicarboxylat-Transporter DctA und DcuB als Co-Sensoren von DcuS in Escherichia coli
Resumo:
Escherichia coli kann C4-Dicarboxylate sowohl unter aeroben als auch unter anaeroben Bedingungen zur Energiekonservierung nutzen. Die Synthese der beteiligten Transporter und Enzyme wird auf der Transkriptionsebene durch das Zweikomponentensystem DcuSR reguliert. DcuS ist der Sensor für C4-Dicarboxylate. Der Antwortregulator DcuR wird von DcuS aktiviert und induziert die Expression des C4-Dicarboxylat-Transporters DctA unter aeroben Verhältnissen. Anaerob verstärkt DcuSR die Expression des Fumarat/Succinat-Antiporters DcuB, der Fumarase B und der Fumaratreduktase FrdABCD. DctA und DcuB agieren als Co-Sensoren von DcuS und üben einen negativen Effekt auf die Genexpression von dctA bzw. dcuB aus.rnIn dieser Arbeit wurde die Funktion von DctA und DcuB als Co-Sensoren von DcuS untersucht. Sowohl für DcuB als auch für DctA wurde eine direkte Protein-Protein-Interaktion mit DcuS über ein bakterielles Two-Hybrid System nachgewiesen. DcuS bildete ein Transporter-Sensor-Cluster mit DctA und DcuB. C-terminale Verkürzung und die Mutagenese einzelner Aminosäuren der C-terminalen Helix 8b von DctA führten zu einem Verlust der Interaktion mit DcuS. Mit dieser Interaktion gingen sowohl die regulatorische Funktion als auch die Transportfunktion der Punktmutante DctA-L414A verloren. Ein Verlust der Interaktion wurde ebenfalls zwischen einer konstitutiv aktiven DcuS-Mutante und wildtypischem DctA beobachtet. Ebenso zeigte sich eine partielle Reduktion der Interaktion von DcuS mit DctA, wenn DcuS nach der zweiten Transmembranhelix verkürzt wurde. Die Interaktion zwischen DcuS und DctA wurde durch den Effektor Fumarat modifiziert, ging aber nicht komplett verloren.rnDctA konnte in verschiedenen Plasmidsystemen überproduziert werden und bildete Homotrimere. Die Topologie von DctA wurde mit experimentellen und in silico Methoden aufgeklärt. DctA ähnelt der Struktur und Topologie des Aminosäuretransporters Glt aus Pyrococcus horikoshii. DctA besitzt acht Transmembranhelices mit einem cytosolischen N- und C-Terminus sowie zwei Haarnadelschleifen. Die Substratbindung findet höchstwahrscheinlich in den Haarnadelschleifen statt und der Transport erfolgt nach dem „alternating access“ Modell.rnAußerdem wurde die Funktion des Transporters YfcC untersucht. Das Gen yfcC wurde mit Schlüsselgenen des Acetatstoffwechsels co-transkribiert. In yfcC-Deletionsstämmen zeigte sich ein stammspezifischer Defekt bei Wachstum mit Acetat und Transport von Acetat.
Resumo:
Die Bioverkapselung ist eine faszinierende Methode, um biologische Materialien einschließlich Zellen in Siliziumdioxid, Metalloxiden oder hybriden Sol-Gel-Polymeren zu immobilisieren. Bisher wurde nur die Sol-Gel-Vorläufertechnologie genutzt, um Bakterien- oder Hefezellen in Siliziumdioxid zu immobilisieren. Hierfür wurden verschiedene Reagenzien als wässrige Vorläufer getestet, um poly(Silicate) auf Biomolekülen (Bhatia et al., 2000) oder Zellen (Liu und Chen 1999; Coradin und Livage, 2007) zu bilden. Einer der erfolgreichsten bisherigen Methoden verwendet eine Mischung aus Silicaten und kolloidalem Silica. Diese initialen Vorläufer werden durch die Zugabe von Salzsäure neutralisiert, was die Gelbildung fortschreiten lässt und die Verkapselung von Bakterien in einem Silica-Netzwerk zur Folge hat (Nassif et al., 2003). Mit der Entdeckung von Silicatein, einem Enzym, das aus Demospongien isoliert wurde und die Bildung von poly(Silicat) katalysiert, wurde es möglich, poly(Silicat) unter physiologischen Bedingungen zu synthetisieren. Silicatein wurde rekombinant in E. coli hergestellt und ist in der Lage, bei Raumtemperatur, neutralem pH-Wert und in wässrigen Puffersystemen aus Siliziumalkoxiden poly(Silicat) zu bilden (Krasko et al., 2000; Müller et al., 2007b; Zhou et al., 1999). In vivo katalysiert Silicatein die Synthese der Silicathülle der Schwamm-Spiculae (Skelettelemente; Müller et al., 2005b; Müller et al., 2007a; Müller et al., 2007b; Schröder et al., 2007a). Dieses Biosilica wurde in Form von Silica-Nanospheren mit Durchmessern zwischen 100 nm und 250 nm organisiert vorgefunden (Pisera 2003; Tahir et al., 2005). Mit dieser Arbeit konnte gezeigt werden, dass Escherichia coli erfolgreich mit dem Silicatein-Gen transformiert werden kann. Das Level der Proteinexpression kann in Anwesenheit von Isopropyl-β-D-thiogalaktopyranosid (IPTG) effizient erhöht werden, indem man die Bakterienzellen gleichzeitig mit Kieselsäure inkubiert. Dieser Effekt konnte sowohl auf Ebene der Synthese des rekombinanten Proteins durch Western Blot als auch durch Immunfluoreszenzmikroskopie nachgewiesen werden. Das heterolog produzierte Silicatein besitzt enzymatische Aktivität und kann die Polymerisation von Kieselsäure katalysieren. Dies konnte sowohl durch Färbung mit Rhodamin123, als auch durch Reaktion der nicht polymerisierten, freien Kieselsäure mit dem ß-Silicomolybdato-Farbsystem (Silicomolybdänblau) nachgewiesen werden. Elektronenmikroskopische Untersuchungen zeigten, dass nur die silicateinexprimierenden Bakterien während des Wachstums in Anwesenheit von Kieselsäure eine viskose Hülle um Zelle herum bilden. Ebenfalls konnte gezeigt werden, dass Silicatein-α aus Suberites domuncula nach Transformation in E. coli an die Zelloberfläche dieser Zellen transportiert wurde und dort seine enzymatische Funktion beibehielt. Die Silicathülle wurde mittels Raster-Elektronenmikroskopie (REM) analysiert. Die Bakterien, die Silicatein exprimierten und poly(Silicat) an ihrer Oberfläche synthetisierten, zeigten die gleichen Wachstumsraten wie die Bakterien, die das Gen nicht enthielten. Schlussfolgernd lässt sich sagen, dass die silicateinvermittelte Verkapselung von Bakterien mit poly(Silicat) die Bandbreite der Anwendung von Bakterien für die Produktion von rekombinanten Proteinen verbessern, erweitern und optimieren könnte.
Resumo:
Escherichia coli kann unter aeroben und anaeroben Bedingungen mit C4-Dicarboxylaten wachsen, die Regulation des Stoffwechsels erfolgt durch das Zwei-Komponenten-System DcuSR. Die C4-Dicarboxylattransporter DctA (aerob) bzw. DcuB (anaerob) agieren als Co-Regulatoren und bilden gemeinsam mit der Sensor-Histidinkinase DcuS einen Sensorkomplex, in dem DcuS den Sensor darstellt und DctA bzw. DcuB diesen in seine rezeptive Form überführen. DcuS ist membranständig und verknüpft die Bindung von C4-Dicarboxylaten im Periplasma mit der Autophosphorylierung seiner Kinasedomäne im Cytoplasma. Dies stellt den Beginn einer Signalkaskade vom extrazellulären Reiz zum cytoplasmatischen Responseregulator DcuR dar.rnIn dieser Arbeit wurde die intramolekulare Signaltransduktion in DcuS und über die Membran untersucht. Der Fokus lag auf der Funktion der beiden Transmembranhelices TM1 und TM2 und der cytoplasmatischen PAS-Domäne, die die sensorische PASp- mit der effektorischen Kinasedomäne verbinden. Konformationsänderungen dieser Signalweiterleitung wurden durch Cysteinzugänglichkeitsstudien, oxidatives Cystein-Crosslinking und Mutageneseexperimente analysiert. rnTM2 wurde als der Überträger eines transmembranen Signals identifiziert, während TM1 als Membrananker fungiert. Der aktive Signalzustand von TM2 wird unabhängig von der Art der DcuS-Aktivierung (Effektorbindung, Deletion des Co-Regulators DctA oder PASc-ON-Mutationen) eingenommen. Der Signaltransduktion liegt eine Verschiebung von TM2 entlang ihrer Längsachse (Kolbenhub) in Richtung Periplasma zu Grunde. Cystein-Crosslinking offenbarte eine durchgehende Helix aus PASp-α6 und TM2, die im Dimer parallel mit ihrem Pendant verschoben wird. Die Amplitude des Kolbenhubs wurde anhand von Zugänglichkeitsveränderungen, der Lage verankernder Tryptophanreste, Strukturvergleichen und energetischen Berechnungen auf max. 4 - 6 Å festgelegt. Sie ist von der Effektorstärke abhängig und koppelt so die metabolische Bevorzugung einzelner Substrate an das Ausmaß des Kolbenhubs und der Genexpression. Für die cytoplasmatische PAS-Domäne wurde ein Zusammenhang zwischen lokaler Dimerisierung und Kontrolle der Sensorfunktion nachgewiesen. Schwächung der Dimerisierung führt zu einer Aktivierung der Sensorkinase. Es wurde eine hydrophobe Region identifiziert, deren strukturelle Integrität für diese Dimerisierung essentiell ist. Mit N248 wurde ein funktionell bedeutender Rest beschrieben, der auf Grund seiner Lage und seiner Eigenschaft mehrere Sekundärstrukturelemente zu verknüpfen, als Scharnier innerhalb der Domäne an der Umsetzung des Kolbenhubs in eine veränderte Quartärstruktur von PASc beteiligt sein könnte.
Resumo:
Enterohemorrhagic Escherichia coli (EHEC) are the causative agent of hemolytic-uremic syndrome. In the first stage of the infection, EHEC interact with human enterocytes to modulate the innate immune response. Inducible NO synthase (iNOS)-derived NO is a critical mediator of the inflammatory response of the infected intestinal mucosa. We therefore aimed to analyze the role of EHEC on iNOS induction in human epithelial cell lines. In this regard, we show that EHEC down-regulate IFN-gamma-induced iNOS mRNA expression and NO production in Hct-8, Caco-2, and T84 cells. This inhibitory effect occurs through the decrease of STAT-1 activation. In parallel, we demonstrate that EHEC stimulate the rapid inducible expression of the gene hmox-1 that encodes for the enzyme heme oxygenase-1 (HO-1). Knock-down of hmox-1 gene expression by small interfering RNA or the blockade of HO-1 activity by zinc protoporphyrin IX abrogated the EHEC-dependent inhibition of STAT-1 activation and iNOS mRNA expression in activated human enterocytes. These results highlight a new strategy elaborated by EHEC to control the host innate immune response.
Resumo:
Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.