985 resultados para Error estimate.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Postoperative chemotherapy is currently not recommended for resected non-small cell lung cancer in many countries and centers. Recently, results of several large randomized clinical trials were reported with conflicting evidence. Accordingly, we sought to determine whether postoperative chemotherapy is associated with improved survival compared with that after surgical intervention alone. Methods Randomized clinical trials with cisplatin- or uracil plus ftorafur-containing regimens were included and evaluated separately. A systematic review that included randomized clinical trials performed before 1995 was identified and found to be of adequate quality. Further randomized controlled trials were identified by searching MEDLINE, EMBASE, and the Cochrane Controlled Trials Register from 1995 through 2004. In addition, the reference lists of articles and conference abstracts were searched. The logarithm of the hazard ratio and its standard error were calculated, and a fixed-effect model was used to combine the estimates. Results There were 7200 patients enrolled in 19 trials included in the analyses. An overall estimate of 13% relative reduction in mortality (95% confidence interval, 7%-19%) was found. There was 11% relative reduction in mortality associated with postoperative cisplatin (95% confidence interval, 4%-18%; P = .004) and 17% associated with uracil plus ftorafur (95% confidence interval, 5%-27%; P = .006) compared with that after surgical intervention alone. This means that there would be an additional survivor at 5 years for 25 patients treated with cisplatin or for 30 patients treated with uracil plus ftorafur. Conclusions Postoperative chemotherapy is associated with improved survival compared with that after surgical intervention alone. Selected patients with completely resected non-small cell lung cancer should be offered chemotherapy. Copyright © 2004 by The American Association for Thoracic Surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate responses to self-administered brief questions regarding consumption of vegetables and fruit by comparison with blood levels of serum carotenoids and red-cell folate. Design: A cross-sectional study in which participants reported their usual intake of fruit and vegetables in servings per day, and serum levels of five carotenoids (α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and lycopene) and red-cell folate were measured. Serum carotenoid levels were determined by high-performance liquid chromatography, and red-cell folate by an automated immunoassay system. Settings and subjects: Between October and December 2000, a sample of 1598 adults aged 25 years and over, from six randomly selected urban centres in Queensland, Australia, were examined as part of a national study conducted to determine the prevalence of diabetes and associated cardiovascular risk factors. Results: Statistically significant (P<0.01) associations with vegetable and fruit intake (categorised into groups: ≤1 serving, 2–3 servings and ≥4 servings per day) were observed for α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin and red-cell folate. The mean level of these carotenoids and of red-cell folate increased with increasing frequency of reported servings of vegetables and fruit, both before and after adjusting for potential confounding factors. A significant association with lycopene was observed only for vegetable intake before adjusting for confounders. Conclusions: These data indicate that brief questions may be a simple and valuable tool for monitoring vegetable and fruit intake in this population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black et al. (2004) identified a systematic difference between LA–ICP–MS and TIMS measurements of 206Pb/238U in zircons, which they correlated with the incompatible trace element content of the zircon. We show that the offset between the LA–ICP–MS and TIMS measured 206Pb/238U correlates more strongly with the total radiogenic Pb than with any incompatible trace element. This suggests that the cause of the 206Pb/238U offset is related to differences in the radiation damage (alpha dose) between the reference and unknowns. We test this hypothesis in two ways. First, we show that there is a strong correlation between the difference in the LA–ICP–MS and TIMS measured 206Pb/238U and the difference in the alpha dose received by unknown and reference zircons. The LA–ICP–MS ages for the zircons we have dated can be as much as 5.1% younger than their TIMS age to 2.1% older, depending on whether the unknown or reference received the higher alpha dose. Second, we show that by annealing both reference and unknown zircons at 850 °C for 48 h in air we can eliminate the alpha-dose-induced differences in measured 206Pb/238U. This was achieved by analyzing six reference zircons a minimum of 16 times in two round robin experiments: the first consisting of unannealed zircons and the second of annealed grains. The maximum offset between the LA–ICP–MS and TIMS measured 206Pb/238U for the unannealed zircons was 2.3%, which reduced to 0.5% for the annealed grains, as predicted by within-session precision based on counting statistics. Annealing unknown zircons and references to the same state prior to analysis holds the promise of reducing the 3% external error for the measurement of 206Pb/238U of zircon by LA–ICP–MS, indicated by Klötzli et al. (2009), to better than 1%, but more analyses of annealed zircons by other laboratories are required to evaluate the true potential of the annealing method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Travel time estimation and prediction on motorways has long been a topic of research. Prediction modeling generally assumes that the estimation is perfect. No matter how good is the prediction modeling- the errors in estimation can significantly deteriorate the accuracy and reliability of the prediction. Models have been proposed to estimate travel time from loop detector data. Generally, detectors are closely spaced (say 500m) and travel time can be estimated accurately. However, detectors are not always perfect, and even during normal running conditions few detectors malfunction, resulting in increase in the spacing between the functional detectors. Under such conditions, error in the travel time estimation is significantly large and generally unacceptable. This research evaluates the in-practice travel time estimation model during different traffic conditions. It is observed that the existing models fail to accurately estimate travel time during large detector spacing and congestion shoulder periods. Addressing this issue, an innovative Hybrid model that only considers loop data for travel time estimation is proposed. The model is tested using simulation and is validated with real Bluetooth data from Pacific Motorway Brisbane. Results indicate that during non free flow conditions and larger detector spacing Hybrid model provides significant improvement in the accuracy of travel time estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new algorithm based on a Modified Particle Swarm Optimization (MPSO) to estimate the harmonic state variables in a distribution networks. The proposed algorithm performs the estimation for both amplitude and phase of each injection harmonic currents by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as the uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WTs). The main features of the proposed MPSO algorithm are usage of a primary and secondary PSO loop and applying the mutation function. The simulation results on 34-bus IEEE radial and a 70-bus realistic radial test networks are presented. The results demonstrate that the speed and the accuracy of the proposed Distribution Harmonic State Estimation (DHSE) algorithm are very excellent compared to the algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO, and Honey Bees Mating Optimization (HBMO).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new algorithm based on honey-bee mating optimization (HBMO) to estimate harmonic state variables in distribution networks including distributed generators (DGs). The proposed algorithm performs estimation for both amplitude and phase of each harmonics by minimizing the error between the measured values from phasor measurement units (PMUs) and the values computed from the estimated parameters during the estimation process. Simulation results on two distribution test system are presented to demonstrate that the speed and accuracy of proposed distribution harmonic state estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as weight least square (WLS), genetic algorithm (GA) and tabu search (TS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new algorithm based on a Hybrid Particle Swarm Optimization (PSO) and Simulated Annealing (SA) called PSO-SA to estimate harmonic state variables in distribution networks. The proposed algorithm performs estimation for both amplitude and phase of each harmonic currents injection by minimizing the error between the measured values from Phasor Measurement Units (PMUs) and the values computed from the estimated parameters during the estimation process. The proposed algorithm can take into account the uncertainty of the harmonic pseudo measurement and the tolerance in the line impedances of the network as well as uncertainty of the Distributed Generators (DGs) such as Wind Turbines (WT). The main feature of proposed PSO-SA algorithm is to reach quickly around the global optimum by PSO with enabling a mutation function and then to find that optimum by SA searching algorithm. Simulation results on IEEE 34 bus radial and a realistic 70-bus radial test networks are presented to demonstrate the speed and accuracy of proposed Distribution Harmonic State Estimation (DHSE) algorithm is extremely effective and efficient in comparison with the conventional algorithms such as Weight Least Square (WLS), Genetic Algorithm (GA), original PSO and Honey Bees Mating Optimization (HBMO) algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel algorithm based on particle swarm optimization (PSO) to estimate the states of electric distribution networks. In order to improve the performance, accuracy, convergence speed, and eliminate the stagnation effect of original PSO, a secondary PSO loop and mutation algorithm as well as stretching function is proposed. For accounting uncertainties of loads in distribution networks, pseudo-measurements is modeled as loads with the realistic errors. Simulation results on 6-bus radial and 34-bus IEEE test distribution networks show that the distribution state estimation based on proposed DLM-PSO presents lower estimation error and standard deviation in comparison with algorithms such as WLS, GA, HBMO, and original PSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use regression (LUR) is a technique that can improve the accuracy of air pollution exposure assessment in epidemiological studies. Most LUR models are developed for single cities, which places limitations on their applicability to other locations. We sought to develop a model to predict nitrogen dioxide (NO2) concentrations with national coverage of Australia by using satellite observations of tropospheric NO2 columns combined with other predictor variables. We used a generalised estimating equation (GEE) model to predict annual and monthly average ambient NO2 concentrations measured by a national monitoring network from 2006 through 2011. The best annual model explained 81% of spatial variation in NO2 (absolute RMS error=1.4 ppb), while the best monthly model explained 76% (absolute RMS error=1.9 ppb). We applied our models to predict NO2 concentrations at the ~350,000 census mesh blocks across the country (a mesh block is the smallest spatial unit in the Australian census). National population-weighted average concentrations ranged from 7.3 ppb (2006) to 6.3 ppb (2011). We found that a simple approach using tropospheric NO2 column data yielded models with slightly better predictive ability than those produced using a more involved approach that required simulation of surface-to-column ratios. The models were capable of capturing within-urban variability in NO2, and offer the ability to estimate ambient NO2 concentrations at monthly and annual time scales across Australia from 2006–2011. We are making our model predictions freely available for research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose There is a suggestion that the long wavelength-sensitive (LWS)-to-middle wavelength-sensitive (MWS) cone ratio in the retina is associated with myopia. The aim was to measure the LWS/MWS amplitude modulation ratio, an estimate of the LWS/MWS cone ratio, in young adult emmetropes and myopes. Methods Multifocal visual evoked potentials were measured when the LWS and MWS cone systems were excited separately using the method of silent substitution. The 30 young adult participants (22 to 33 years) included 10 emmetropes (mean [±SD] refraction, +0.3 [±0.4] diopters [D]) and 20 myopes (mean [±SD] refraction, -3.4 [±1.7] D). Results The LWS/MWS amplitude modulation ratios ranged from 0.56 to 1.80 in the central 3- to 13-degree diameter ring and from 0.94 to 1.91 in the peripheral 13- to 30-degree diameter ring. Within the central ring, the mean (±SD) ratios were 1.20 (±0.26) and 1.20 (±0.33) for the emmetropic and the myopic groups, respectively. For the peripheral ring, the mean (±SD) ratios were 1.48 (±0.27) and 1.30 (±0.27), respectively. There were no significant differences in the ratios between the emmetropic and myopic groups for either the central (p = 0.99) or peripheral (p = 0.08) rings. For the latter, more myopic refractive error was associated with lower LWS/MWS amplitude modulation ratio; the refraction explained 16% (p = 0.02) of variation in ratio. Conclusions The relationship between the LWS/MWS amplitude modulation ratios and refraction at 13 to 30 degrees indicates that a large longitudinal study of changes in refraction in persons with known cone ratio is required to determine if a low LWS/MWS cone ratio is associated with myopia development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To enhance the efficiency of regression parameter estimation by modeling the correlation structure of correlated binary error terms in quantile regression with repeated measurements, we propose a Gaussian pseudolikelihood approach for estimating correlation parameters and selecting the most appropriate working correlation matrix simultaneously. The induced smoothing method is applied to estimate the covariance of the regression parameter estimates, which can bypass density estimation of the errors. Extensive numerical studies indicate that the proposed method performs well in selecting an accurate correlation structure and improving regression parameter estimation efficiency. The proposed method is further illustrated by analyzing a dental dataset.