966 resultados para Equations, Cubic.
Resumo:
In this paper we shall study a fractional order functional integral equation. In the first part of the paper, we proved the existence and uniqueness of mile and global solutions in a Banach space. In the second part of the paper, we used the analytic semigroups theory oflinear operators and the fixed point method to establish the existence, uniqueness and convergence of approximate solutions of the given problem in a separable Hilbert space. We also proved the existence and convergence of Faedo-Galerkin approximate solution to the given problem. Finally, we give an example.
Resumo:
In this paper, we show existence and uniqueness of a solution to a functional differential equation with infinite delay. We choose an appropriate Frechet space so as to cover a large class of functions to be used as initial functions to obtain existence and uniqueness of solutions.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
This paper compares, in a general way, the predictions of the constitutive equations given by Rivlin and Ericksen, Oldroyd, and Walters. Whether we consider the rotational problems in cylindrical co-ordinates or in spherical polar co-ordinates, the effect of the non-Newtonicity on the secondary flows is collected in a single parameterα which can be explicitly expressed in terms of the non-Newtonian parameters that occur in each of the above-mentioned constitutive equations. Thus, for a given value ofα, all the three fluids will have identical secondary flows. It is only through the study of appropriate normal stresses that a Rivlin-Ericksen fluid can be distinguished from the other two fluids which are indistinguishable as long as this non-Newtonian parameter has the same value.
Resumo:
It is shown that the systems of definite actions described by polar and axial tensors of the second rank and their combinations during the superposition of their elements of complete symmetry with the elements of complete symmetry of the "grey" cube, result in 11 cubic crystallographical groups of complete symmetry. There are 35 ultimate groups (i.e., the groups having the axes of symmetry of infinite order) in complete symmetry of finite figures. 14 out of these groups are ultimate groups of symmetry of polar and axial tensors of the second rank and 24 are new groups. All these 24 ultimate groups are conventional groups since they cannot be presented by certain finite figures possessing the axes of symmetry {Mathematical expression}. Geometrical interpretation for some of the groups of complete symmetry is given. The connection between complete symmetry and physical properties of the crystals (electrical, magnetic and optical) is shown.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
We reformulate and extend our recently introduced quantum kinetic theory for interacting fermion and scalar fields. Our formalism is based on the coherent quasiparticle approximation (cQPA) where nonlocal coherence information is encoded in new spectral solutions at off-shell momenta. We derive explicit forms for the cQPA propagators in the homogeneous background and show that the collision integrals involving the new coherence propagators need to be resummed to all orders in gradient expansion. We perform this resummation and derive generalized momentum space Feynman rules including coherent propagators and modified vertex rules for a Yukawa interaction. As a result we are able to set up self-consistent quantum Boltzmann equations for both fermion and scalar fields. We present several examples of diagrammatic calculations and numerical applications including a simple toy model for coherent baryogenesis.
Resumo:
An exact solution for the free vibration problem of non-linear cubic spring mass system with Coulomb damping is obtained during each half cycle, in terms of elliptic functions. An expression for the half cycle duration as a function of the mean amplitude during the half cycle is derived in terms of complete elliptic integrals of the first kind. An approximate solution based on a direct linearization method is developed alongside this method, and excellent agreement is obtained between the results gained by this method and the exact results. © 1970 Academic Press Inc. (London) Limited.
Resumo:
In this paper the classical problem of water wave scattering by two partially immersed plane vertical barriers submerged in deep water up to the same depth is investigated. This problem has an exact but complicated solution and an approximate solution in the literature of linearised theory of water waves. Using the Havelock expansion for the water wave potential, the problem is reduced here to solving Abel integral equations having exact solutions. Utilising these solutions,two sets of expressions for the reflection and transmission coefficients are obtained in closed forms in terms of computable integrals in contrast to the results given in the literature which,involved six complicated integrals in terms of elliptic functions. The two different expressions for each coefficient produce almost the same numerical results although it has not been possible to prove their equivalence analytically. The reflection coefficient is depicted against the wave number in a number of figures which almost coincide with the figures available in the literature wherein the problem was solved approximately by employing complementary approximations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Polarisation characters of the Raman lines of calcium fluoride (fluorspar) and potassium aluminium sulphate (alum) were investigated under the following conditions. Unpolarised light was incident normally on a face of the crystal making an angle 22.5° with a cubic face and the light scattered transversely along a cubic axis was analysed by a double image prism kept with its principal axes inclined at 45° to the vertical. Under these conditions the depolarisation factors of the Raman lines belonging to the totally symmetric (A), the doubly degenerate (E) and the triply degenerate (F) modes should be respectively =1, >1 and <1. The characteristic Raman line of CaF2 at 322 cm-1 exhibited a depolarisation value less than 1, showing thereby that the corresponding mode is a triply degenerate one (F). The Raman lines observed in the spectrum of K-alum were also classified and the results were compared with those given by previous investigators using standard crystal orientations.
Resumo:
The paper deals with a linearization technique in non-linear oscillations for systems which are governed by second-order non-linear ordinary differential equations. The method is based on approximation of the non-linear function by a linear function such that the error is least in the weighted mean square sense. The method has been applied to cubic, sine, hyperbolic sine, and odd polynomial types of non-linearities and the results obtained are more accurate than those given by existing linearization methods.
Resumo:
neral expressions have been derived for the intensities of the three classes of Raman lines namely totally symmetric A, doubly degenerate E and triply degenerate F, in the case of cubic crystals under the following conditions. The direction of the incident beam which is polarised with its electric vector inclined at an angle α to the normal to the scattering plane makes an angle Θ with one of the cubic axes of the crystal. The transversely scattered light is analysed by a double image prism with its principal axes inclined at angle β to the normal to the scattering plane, which is horizontal. For incident unpolarised light and Θ=22 1/2°, and the scattered light being analysed by a double image prism rotated through 45° from the position when its principal axes are vertical and horizontal ρ{variant} for A lines is equal to one, for E lines >1 and for F lines <1. This gives a method of classifying the Raman lines of a cubic crystal in a single setting. The results have been experimentally verified in sodium chlorate.