945 resultados para Epithelial-mesenchymal crosstalk
Resumo:
Umbilical cord mesenchymal stromal cells (MSC) have been widely investigated for cell-based therapy studies as an alternative source to bone marrow transplantation. Umbilical cord tissue is a rich source of MSCs with potential to derivate at least muscle, cartilage, fat, and bone cells in vitro. The possibility to replace the defective muscle cells using cell therapy is a promising approach for the treatment of progressive muscular dystrophies (PMDs), independently of the specific gene mutation. Therefore, preclinical studies in different models of muscular dystrophies are of utmost importance. The main objective of the present study is to evaluate if umbilical cord MSCs have the potential to reach and differentiate into muscle cells in vivo in two animal models of PMDs. In order to address this question we injected (1) human umbilical cord tissue (hUCT) MSCs into the caudal vein of SJL mice; (2) hUCT and canine umbilical cord vein (cUCV) MSCs intra-arterially in GRMD dogs. Our results here reported support the safety of the procedure and indicate that the injected cells could engraft in the host muscle in both animal models but could not differentiate into muscle cells. These observations may provide important information aiming future therapy for muscular dystrophies.
Resumo:
This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.
Resumo:
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) play a central role in neuronal differentiation. However, Ca(2+) signaling in this process remains poorly understood and it is unknown whether embryonic and adult stem cells share the same signaling pathways. To clarify this issue, neuronal differentiation was analyzed in two cell lines: embryonic P19 carcinoma stem cells (CSCs) and adult murine bone-marrow mesenchymal stem cells (MSC). We studied Ca(2+) release from the endoplasmic reticulum via intracellular ryanodine-sensitive (RyR) and IP(3)-sensitive (IP(3)R) receptors. We observed that caffeine, a RyR agonist, induced a [Ca(2+)](i) response that increased throughout neuronal differentiation. We also demonstrated a functional coupling between RyRs and L-but not with N-, P-, or Q-type Ca(v)1 Ca(2+) channels, both in embryonal CSC and adult MSC. We also found that agonists of L-type channels and of RyRs increase neurogenesis and neuronal differentiation, while antagonists of these channels have the opposite effect. Thus, our data demonstrate that in both cell lines RyRs control internal Ca(2+) release following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels. This study shows that both in embryonal CSC and adult MSC [Ca(2+)](i) is controlled by a common pathway, indicating that coupling of L-type Ca(2+) channels and RyRs may be a conserved mechanism necessary for neuronal differentiation.
Resumo:
The crosstalk phenomenon consists in recording the volume-conducted electromyographic activity of muscles other than that under study. This interference may impair the correct interpretation of the results in a variety of experiments. A new protocol is presented here for crosstalk assessment between two muscles based on changes in their electrical activity following a reflex discharge in one of the muscles in response to nerve stimulation. A reflex compound muscle action potential (H-reflex) was used to induce a silent period in the muscle that causes the crosstalk, called here the remote muscle. The rationale is that if the activity recorded in the target muscle is influenced by a distant source (the remote muscle) a silent period observed in the electromyogram (EMG) of the remote muscle would coincide with a decrease in the EMG activity of the target muscle. The new crosstalk index is evaluated based on the root mean square (RMS) values of the EMGs obtained in two distinct periods (background EMG and silent period) of both the remote and the target muscles. In the present work the application focused on the estimation of the degree of crosstalk from the soleus muscle to the tibialis anterior muscle during quiet stance. However, the technique may be extended to other pairs of muscles provided a silent period may be evoked in one of them. (C) 2009 IPEM. Published by Elsevier Ltd. All rights reserved.
Resumo:
The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin`s surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.
Resumo:
Fluoxetine (FIX) is a drug commonly used as antidepressant. However, its effects on tumorigenesis remain controversial. Aiming to evaluate the effects of FIX treatment on early malignant changes, we analyzed serotonin (5-HT) metabolism and recognition, aberrant crypt foci (ACF), proliferative process, microvessels, vascular endothelial growth factor (VEGF), and cyclooxygenase-2 (COX-2) expression in colon tissue. Male Wistar rats received a daily FLX-gavage (30 mg kg(-1)) and, a single dose of 1.2 dimethylhydrazine (DMH; i.p., 125 mg kg(-1)). After 6 weeks of FIX-treatment, our results revealed that FIX and nor-fluoxetine (N-FIX) are present in colon tissue, which was related to significant increase in serotonin (5-HT) levels (P < 0.05) possibly through a blockade in SERT mRNA (serotonin reuptake transporter; P < 0.05) resulting in lower 5-hydroxyindoleacetic acid (5-HIAA) levels (P < 0.01) and, 5-HT2C receptor mRNA expressions. FIX-treatment decreased dysplastic ACF development (P < 0.01) and proliferative process (P < 0.001) in epithelia. We observed a significant decrease in the development of malignant microvessels (P < 0.05), VEGF (P < 0.001), and COX-2 expression (P < 0.01). These findings suggest that FIX may have oncostatic effects on carcinogenic colon tissue, probably due to its modulatory activity on 5-HT metabolism and/or its ability to reduce colonic malignant events. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: To improve the success of culturing olfactory neurons from human nasal mucosa by investigating the intranasal distribution of the olfactory epithelium and devising new techniques for growing human olfactory epithelium in vitro. Design: Ninety-seven biopsy specimens were obtained from 33 individuals, aged 21 to 74 years, collected from 6 regions of the nasal cavity. Each biopsy specimen was bisected, and 1 piece was processed for immunohistochemistry or electron microscopy while the other piece was dissected further for explant culture. Four culture techniques were performed, including whole explants and explanted biopsy slices. Five days after plating, neuronal differentiation was induced by means of a medium that contained basic fibroblast growth factor. After another 5 days, cultures were processed for immunocytochemical analysis. Results: The probability of finding olfactory epithelium in a biopsy specimen ranged from 30% to 76%, depending on its location. The dorsoposterior regions of the nasal septum and the superior turbinate provided the highest probability, but, surprisingly, olfactory epithelium was also found anteriorly and ventrally on both septum and turbinates. A new method of culturing the olfactory epithelium was devised. This slice culture technique improved the success rate for generating olfactory neurons from 10% to 90%. Conclusions: This study explains and overcomes most of the variability in the success in observing neurogenesis in cultures of adult human olfactory epithelium. The techniques presented here make the human olfactory epithelium a useful model for clinical research into certain olfactory dysfunctions and a model for the causes of neurodevelopmental and neurodegenerative diseases.
Resumo:
In a case-control study in three Australian states that included 794 women with epithelial ovarian cancer and 853 community controls for whom we had adequate contraceptive and reproductive histories, Re examined the effects of oral contraceptive use after controlling for estimated number of ovulatory cycles. Other covariates included in the multiple logistic regression analysis were parity, smoking, and history of pelvic surgery. The protective effect of duration of oral contraceptive use appeared to be multiplicative, with a 7% decrease in relative risk per year [95% confidence interval (CI) = 4-9%], persisting beyond 15 years of exposure. Use for up to 1 year may have a greater effect than predicted (odds ratio = 0.57; 95% CI = 0.40-0.82), whereas use before the first pregnancy may be additionally beneficial (odds ratio = 0.95; 95% CI = 0.87-1.03, adjusted for overall duration of use). Better control for ovulatory life might attenuate these estimates somewhat. There was little evidence of waning protection with time since last exposure or of extra benefit with early commencement of oral contraceptive use. We found no convincing evidence of effect modification in any factor examined or differences in effect among the three main histologic cancer types or between borderline and malignant tumors. Oral contraceptives may act by both suppressing ovulation and altering the tumor-promoting milieu.
Resumo:
The immunosurveillance of transformed cells by the immune system remains one of the most controversial and poorly understood areas of immunity. Gene-targeted mice have greatly aided our understanding of the key effector molecules in tumor immunity. Herein, we describe spontaneous tumor development in gene-targeted mice lacking interferon (IFN)-gamma and/or perform (pfp), or the immunoregulatory cytokines, interleukin (IL)-12, IL-18, and tumor necrosis factor (TNF). Both IFN-gamma and pfp were critical for suppression of lymphomagenesis, however the level of protection afforded by IFN-gamma was strain specific. Lymphomas arising in IFN-gamma deficient mice were very nonimmunogenic compared with those derived from pfp-deficient mice, suggesting a comparatively weaker immunoselection pressure by IFN-gamma. Single loss of IL-12, IL-18, or TNF was not sufficient for spontaneous tumor development. A significant incidence of late onset adenocarcinoma observed in both IFN-gamma- and pfp-deficient mice indicated that some epithelial tissues were also subject to immunosurveillance.
Resumo:
Diadromous freshwater shrimps are exposed to brackish water both as an obligatory part of their larval life cycle and during adult reproductive migration; their well-developed osmoregulatory ability is crucial to survival in such habitats. This study examines gill microsomal Na,K-ATPase (K-phosphatase activity) kinetics and protein profiles in the freshwater shrimp Macrobrachium amazonicum when in fresh water and after 10-days of acclimation to brackish water (21 parts per thousand salinity), as well as potential routes of Na(+) uptake across the gill epithelium in fresh water. On acclimation, K-phosphatase activity decreases 2.5-fold, Na,K-ATPase alpha-subunit expression declines, total protein expression pattern is markedly altered, and enzyme activity becomes redistributed into different density membrane fractions, possibly reflecting altered vesicle trafficking between the plasma membrane and intracellular compartments. Ultrastructural analysis reveals an intimately coupled pillar cell-septal cell architecture and shows that the cell membrane interfaces between the external medium and the hemolymph are greatly augmented by apical pillar cell evaginations and septal cell inviginations, respectively. These findings ire discussed regarding the putative movement of Na(+) across the pillar cell interfaces and into the hemolymph via the septal cells, powered by the Na,K-ATPase located in their invaginations. (C) 2008 Elsevier Inc. All rights reserved.