857 resultados para Environments with time-varying ocean currents


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensor networks are becoming popular nowadays in the development of smart environments. Heavily relying on static sensor and actuators, though, such environments usually lacks of versatility regarding the provided services and interaction capabilities. Here we present a framework for smart environments where a service robot is included within the sensor network acting as a mobile sensor and/or actuator. Our framework integrates on-the-shelf technologies to ensure its adaptability to a variety of sensor technologies and robotic software. Two pilot cases are presented as evaluation of our proposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tidal influence on the Big Pine Key saltwater/freshwater interface was analyzed using time-lapse electrical resistivity imaging and shallow well measurements. The transition zone at the saltwater/freshwater interface was measured over part of a tidal cycle along three profiles. The resistivity was converted to salinity by deriving a formation factor for the Miami Oolite. A SEAWAT model was created to attempt to recreate the field measurements and test previously established hydrogeologic parameters. The results imply that the tide only affects the groundwater within 20 to 30 m of the coast. The effect is small and caused by flooding from the high tide. The low relief of the island means this effect is very sensitive to small changes in the magnitude. The SEAWAT model proved to be insufficient in modeling this effect. The study suggests that the extent of flooding is the largest influence on the salinity of the groundwater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diante de uma discussão não consensual a respeito da existência ou não de um trade-off entre inflação e desemprego (curva de Phillips), esta dissertação analisa a evolução desta relação na economia brasileira no período 1980-2010 através de duas análises diferentes: A primeira é uma análise considerada estática, realizada com a utilização de uma regressão linear simples. A segunda consiste em uma análise dinâmica, onde é utilizada uma regressão com coeficientes time-varying, com a estimação dos coeficientes sendo realizada com a aplicação do filtro de Kalman. Os resultados econométricos mostraram que a relação entre inflação e desemprego de fato se alterou ao longo do período analisado: A curva de Phillips se torna horizontal após o Plano Real e fica levemente positiva após o Regime de Metas de Inflação. Sendo assim, este trabalho basicamente se divide em duas partes: A primeira consiste de uma contextualização teórica da relação entre inflação e desemprego e do regime de metas de inflação. A segunda parte traz a análise econométrica, onde é descrita a evolução do trade-off. Diante dos resultados encontrados, são apresentadas suas possíveis causas e é realizada uma análise qualitativa da atual política monetária praticada pelo Banco Central do Brasil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação propõe um algoritmo do Controlador Preditivo Generalizado (GPC) com horizonte de controle igual a um para ser aplicado em plantas industriais com modelos variantes no tempo, simples o su ficiente para ser implementado em Controlador Lógico Programável (PLC). A solução explícita do controlador é obtida em função dos parâmetros do modelo e dos parâmetros de sintonia do GPC (horizonte nal de predição hp e o fator de supressão do sinal de controle ), além das entradas e saídas presentes e passadas. A sintonia do fator de supressão e do horizonte de previsão GPC é feita através do lugar das raízes da equação característica do sistema em malha fechada, sempre que os parâmetros do modelo da planta industrial (estável ou instável em malha aberta) forem modificados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use factor augmented vector autoregressive models with time-varying coefficients to construct a financial conditions index. The time-variation in the parameters allows for the weights attached to each financial variable in the index to evolve over time. Furthermore, we develop methods for dynamic model averaging or selection which allow the financial variables entering into the FCI to change over time. We discuss why such extensions of the existing literature are important and show them to be so in an empirical application involving a wide range of financial variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expanding literature articulates the view that Taylor rules are helpful in predicting exchange rates. In a changing world however, Taylor rule parameters may be subject to structural instabilities, for example during the Global Financial Crisis. This paper forecasts exchange rates using such Taylor rules with Time Varying Parameters (TVP) estimated by Bayesian methods. In core out-of-sample results, we improve upon a random walk benchmark for at least half, and for as many as eight out of ten, of the currencies considered. This contrasts with a constant parameter Taylor rule model that yields a more limited improvement upon the benchmark. In further results, Purchasing Power Parity and Uncovered Interest Rate Parity TVP models beat a random walk benchmark, implying our methods have some generality in exchange rate prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We estimate the response of stock prices to exogenous monetary policy shocks usinga vector-autoregressive model with time-varying parameters. Our evidence points toprotracted episodes in which, after a a short-run decline, stock prices increase persistently in response to an exogenous tightening of monetary policy. That responseis clearly at odds with the "conventional" view on the effects of monetary policy onbubbles, as well as with the predictions of bubbleless models. We also argue that it isunlikely that such evidence be accounted for by an endogenous response of the equitypremium to the monetary policy shocks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the transition between exchange rate regimes using a Markov chain model with time-varying transition probabilities. The probabilities are parameterized as nonlinear functions of variables suggested by the currency crisis and optimal currency area literature. Results using annual data indicate that inflation, and to a lesser extent, output growth and trade openness help explain the exchange rate regime transition dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le modèle GARCH à changement de régimes est le fondement de cette thèse. Ce modèle offre de riches dynamiques pour modéliser les données financières en combinant une structure GARCH avec des paramètres qui varient dans le temps. Cette flexibilité donne malheureusement lieu à un problème de path dependence, qui a empêché l'estimation du modèle par le maximum de vraisemblance depuis son introduction, il y a déjà près de 20 ans. La première moitié de cette thèse procure une solution à ce problème en développant deux méthodologies permettant de calculer l'estimateur du maximum de vraisemblance du modèle GARCH à changement de régimes. La première technique d'estimation proposée est basée sur l'algorithme Monte Carlo EM et sur l'échantillonnage préférentiel, tandis que la deuxième consiste en la généralisation des approximations du modèle introduites dans les deux dernières décennies, connues sous le nom de collapsing procedures. Cette généralisation permet d'établir un lien méthodologique entre ces approximations et le filtre particulaire. La découverte de cette relation est importante, car elle permet de justifier la validité de l'approche dite par collapsing pour estimer le modèle GARCH à changement de régimes. La deuxième moitié de cette thèse tire sa motivation de la crise financière de la fin des années 2000 pendant laquelle une mauvaise évaluation des risques au sein de plusieurs compagnies financières a entraîné de nombreux échecs institutionnels. À l'aide d'un large éventail de 78 modèles économétriques, dont plusieurs généralisations du modèle GARCH à changement de régimes, il est démontré que le risque de modèle joue un rôle très important dans l'évaluation et la gestion du risque d'investissement à long terme dans le cadre des fonds distincts. Bien que la littérature financière a dévoué beaucoup de recherche pour faire progresser les modèles économétriques dans le but d'améliorer la tarification et la couverture des produits financiers, les approches permettant de mesurer l'efficacité d'une stratégie de couverture dynamique ont peu évolué. Cette thèse offre une contribution méthodologique dans ce domaine en proposant un cadre statistique, basé sur la régression, permettant de mieux mesurer cette efficacité.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The H∞ synchronization problem of the master and slave structure of a second-order neutral master-slave systems with time-varying delays is presented in this paper. Delay-dependent sufficient conditions for the design of a delayed output-feedback control are given by Lyapunov-Krasovskii method in terms of a linear matrix inequality (LMI). A controller, which guarantees H∞ synchronization of the master and slave structure using some free weighting matrices, is then developed. A numerical example has been given to show the effectiveness of the method

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical growth model for the batch solid-state fermentation process for fungal tannase production was developed and tested experimentally. The unstructured model describes the uptake and growth kinetics of Penicillium glabrum in an impregnated polyurethane foam substrate system. In general, good agreement between the experimental data and model simulations was obtained. Biomass, tannase and spore production are described by logistic kinetics with a time delay between biomass production and tannase and spore formation. Possible induction mechanisms for the latter are proposed. Hydrolysis of tannic acid, the main carbon source in the substrate system, is reasonably well described with Michaelis-Menten kinetics with time-varying enzyme concentration but a more complex reaction mechanism is suspected. The metabolism of gallic acid, a tannase-hydrolysis product of tannic acid, was shown to be growth limiting during the main growth phase. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first essay, "Determinants of Credit Expansion in Brazil", analyzes the determinants of credit using an extensive bank level panel dataset. Brazilian economy has experienced a major boost in leverage in the first decade of 2000 as a result of a set factors ranging from macroeconomic stability to the abundant liquidity in international financial markets before 2008 and a set of deliberate decisions taken by President Lula's to expand credit, boost consumption and gain political support from the lower social strata. As relevant conclusions to our investigation we verify that: credit expansion relied on the reduction of the monetary policy rate, international financial markets are an important source of funds, payroll-guaranteed credit and investment grade status affected positively credit supply. We were not able to confirm the importance of financial inclusion efforts. The importance of financial sector sanity indicators of credit conditions cannot be underestimated. These results raise questions over the sustainability of this expansion process and financial stability in the future. The second essay, “Public Credit, Monetary Policy and Financial Stability”, discusses the role of public credit. The supply of public credit in Brazil has successfully served to relaunch the economy after the Lehman-Brothers demise. It was later transformed into a driver for economic growth as well as a regulation device to force private banks to reduce interest rates. We argue that the use of public funds to finance economic growth has three important drawbacks: it generates inflation, induces higher loan rates and may induce financial instability. An additional effect is the prevention of market credit solutions. This study contributes to the understanding of the costs and benefits of credit as a fiscal policy tool. The third essay, “Bayesian Forecasting of Interest Rates: Do Priors Matter?”, discusses the choice of priors when forecasting short-term interest rates. Central Banks that commit to an Inflation Target monetary regime are bound to respond to inflation expectation spikes and product hiatus widening in a clear and transparent way by abiding to a Taylor rule. There are various reports of central banks being more responsive to inflationary than to deflationary shocks rendering the monetary policy response to be indeed non-linear. Besides that there is no guarantee that coefficients remain stable during time. Central Banks may switch to a dual target regime to consider deviations from inflation and the output gap. The estimation of a Taylor rule may therefore have to consider a non-linear model with time varying parameters. This paper uses Bayesian forecasting methods to predict short-term interest rates. We take two different approaches: from a theoretic perspective we focus on an augmented version of the Taylor rule and include the Real Exchange Rate, the Credit-to-GDP and the Net Public Debt-to-GDP ratios. We also take an ”atheoretic” approach based on the Expectations Theory of the Term Structure to model short-term interest. The selection of priors is particularly relevant for predictive accuracy yet, ideally, forecasting models should require as little a priori expert insight as possible. We present recent developments in prior selection, in particular we propose the use of hierarchical hyper-g priors for better forecasting in a framework that can be easily extended to other key macroeconomic indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)