900 resultados para Elaborazione d’immagini, Microscopia, Istopatologia, Classificazione, K-means


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficiency in the use of genetic variability, whether existing or created, increases when properly explored and analysed. Incorporation of biotechnology into breeding programs has been the general practice. The challenge for the researcher is the constant development of new and improved cultivars. The aim of this experiment was to select progenies with superior characteristics, whether or not carriers of the RR gene, derived from bi-parental crosses in the soybean, with the help of multivariate techniques. The experiment was carried out in a family-type experimental design, including controls, during the agricultural year 2010/2011 and 2011/2012 in Jaboticabal in the Brazilian State of São Paulo. From the F3 generation, phenotypically superior plants were selected, which were evaluated for the following traits: number of days to flowering; number of days to maturity; height of first pod insertion; plant height at maturity; lodging; agronomic value; number of branches; number of pods per plant; 100-seed weight; number of seeds per plant; grain yield per plant. Given the results, it appears possible to select superior progeny by principal component analysis. Cluster analysis using the K-means method links progeny according to the most important characteristics in each group and identifies, by the Ward method and by means of a dendrogram, the structure of similarity and divergence between selected progeny. Both methods are effective in aiding progeny selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to typify, through physicochemical parameters, honey from Campos do Jordão’s microrregion, and verify how samples are grouped in accordance with the climatic production seasonality (summer and winter). It were assessed 30 samples of honey from beekeepers located in the cities of Monteiro Lobato, Campos do Jordão, Santo Antonio do Pinhal e São Bento do Sapucaí-SP, regarding both periods of honey production (November to February; July to September, during 2007 and 2008; n = 30). Samples were submitted to physicochemical analysis of total acidity, pH, humidity, water activity, density, aminoacids, ashes, color and electrical conductivity, identifying physicochemical standards of honey samples from both periods of production. Next, we carried out a cluster analysis of data using k-means algorithm, which grouped the samples into two classes (summer and winter). Thus, there was a supervised training of an Artificial Neural Network (ANN) using backpropagation algorithm. According to the analysis, the knowledge gained through the ANN classified the samples with 80% accuracy. It was observed that the ANNs have proved an effective tool to group samples of honey of the region of Campos do Jordao according to their physicochemical characteristics, depending on the different production periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: This study aimed to classify alcohol-dependent outpatients on the basis of clinical factors and to verify if the resulting types show different treatment retention. Methods: The sample comprised 332 alcoholics that were enrolled in three different pharmacological trials carried out at Sao Paulo University, Brazil. Based on four clinical factors problem drinking onset age, familial alcoholism, alcohol dependence severity, and depression - K-means cluster analysis was performed by using the average silhouette width to determine the number of clusters. A direct logistic regression was performed to analyze the influence of clusters, medication groups, and Alcoholics Anonymous ( AA) attendance in treatment retention. Results: Two clusters were delineated. The cluster characterized by earlier onset age, more familial alcoholism, higher alcoholism severity, and less depression symptoms showed a higher chance of discontinuing the treatment, independently of medications used and AA attendance. Participation in AA was significantly related to treatment retention. Discussion: Health services should broaden the scope of services offered to meet heterogeneous needs of clients, and identify treatment practices and therapists which improve retention. Information about patients' characteristics linked to dropout should be used to make treatment programs more responsive and attractive, combining pharmacological agents with more intensive and diversified psychosocial interventions. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study performed an exploratory analysis of the anthropometrical and morphological muscle variables related to the one-repetition maximum (1RM) performance. In addition, the capacity of these variables to predict the force production was analyzed. 50 active males were submitted to the experimental procedures: vastus lateralis muscle biopsy, quadriceps magnetic resonance imaging, body mass assessment and 1RM test in the leg-press exercise. K-means cluster analysis was performed after obtaining the body mass, sum of the left and right quadriceps muscle cross-sectional area (Sigma CSA), percentage of the type II fibers and the 1RM performance. The number of clusters was defined a priori and then were labeled as high strength performance (HSP1RM) group and low strength performance (LSP1RM) group. Stepwise multiple regressions were performed by means of body mass, Sigma CSA, percentage of the type II fibers and clusters as predictors' variables and 1RM performance as response variable. The clusters mean +/- SD were: 292.8 +/- 52.1 kg, 84.7 +/- 17.9 kg, 19249.7 +/- 1645.5 mm(2) and 50.8 +/- 7.2% for the HSP1RM and 254.0 +/- 51.1 kg, 69.2 +/- 8.1 kg, 15483.1 +/- 1 104.8 mm(2) and 51.7 +/- 6.2 %, for the LSP1RM in the 1RM, body mass, Sigma CSA and muscle fiber type II percentage, respectively. The most important variable in the clusters division was the Sigma CSA. In addition, the Sigma CSA and muscle fiber type II percentage explained the variance in the 1RM performance (Adj R-2 = 0.35, p = 0.0001) for all participants and for the LSP1RM (Adj R-2 = 0.25, p = 0.002). For the HSP1RM, only the Sigma CSA was entered in the model and showed the highest capacity to explain the variance in the 1RM performance (Adj R-2 = 0.38, p = 0.01). As a conclusion, the muscle CSA was the most relevant variable to predict force production in individuals with no strength training background.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To characterize the PI component of long latency auditory evoked potentials (LLAEPs) in cochlear implant users with auditory neuropathy spectrum disorder (ANSD) and determine firstly whether they correlate with speech perception performance and secondly whether they correlate with other variables related to cochlear implant use. Methods: This study was conducted at the Center for Audiological Research at the University of Sao Paulo. The sample included 14 pediatric (4-11 years of age) cochlear implant users with ANSD, of both sexes, with profound prelingual hearing loss. Patients with hypoplasia or agenesis of the auditory nerve were excluded from the study. LLAEPs produced in response to speech stimuli were recorded using a Smart EP USB Jr. system. The subjects' speech perception was evaluated using tests 5 and 6 of the Glendonald Auditory Screening Procedure (GASP). Results: The P-1 component was detected in 12/14 (85.7%) children with ANSD. Latency of the P-1 component correlated with duration of sensorial hearing deprivation (*p = 0.007, r = 0.7278), but not with duration of cochlear implant use. An analysis of groups assigned according to GASP performance (k-means clustering) revealed that aspects of prior central auditory system development reflected in the P-1 component are related to behavioral auditory skills. Conclusions: In children with ANSD using cochlear implants, the P-1 component can serve as a marker of central auditory cortical development and a predictor of the implanted child's speech perception performance. (c) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently there has been a considerable interest in dynamic textures due to the explosive growth of multimedia databases. In addition, dynamic texture appears in a wide range of videos, which makes it very important in applications concerning to model physical phenomena. Thus, dynamic textures have emerged as a new field of investigation that extends the static or spatial textures to the spatio-temporal domain. In this paper, we propose a novel approach for dynamic texture segmentation based on automata theory and k-means algorithm. In this approach, a feature vector is extracted for each pixel by applying deterministic partially self-avoiding walks on three orthogonal planes of the video. Then, these feature vectors are clustered by the well-known k-means algorithm. Although the k-means algorithm has shown interesting results, it only ensures its convergence to a local minimum, which affects the final result of segmentation. In order to overcome this drawback, we compare six methods of initialization of the k-means. The experimental results have demonstrated the effectiveness of our proposed approach compared to the state-of-the-art segmentation methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmosphärische Aerosolpartikel wirken in vielerlei Hinsicht auf die Menschen und die Umwelt ein. Eine genaue Charakterisierung der Partikel hilft deren Wirken zu verstehen und dessen Folgen einzuschätzen. Partikel können hinsichtlich ihrer Größe, ihrer Form und ihrer chemischen Zusammensetzung charakterisiert werden. Mit der Laserablationsmassenspektrometrie ist es möglich die Größe und die chemische Zusammensetzung einzelner Aerosolpartikel zu bestimmen. Im Rahmen dieser Arbeit wurde das SPLAT (Single Particle Laser Ablation Time-of-flight mass spectrometer) zur besseren Analyse insbesondere von atmosphärischen Aerosolpartikeln weiterentwickelt. Der Aerosoleinlass wurde dahingehend optimiert, einen möglichst weiten Partikelgrößenbereich (80 nm - 3 µm) in das SPLAT zu transferieren und zu einem feinen Strahl zu bündeln. Eine neue Beschreibung für die Beziehung der Partikelgröße zu ihrer Geschwindigkeit im Vakuum wurde gefunden. Die Justage des Einlasses wurde mithilfe von Schrittmotoren automatisiert. Die optische Detektion der Partikel wurde so verbessert, dass Partikel mit einer Größe < 100 nm erfasst werden können. Aufbauend auf der optischen Detektion und der automatischen Verkippung des Einlasses wurde eine neue Methode zur Charakterisierung des Partikelstrahls entwickelt. Die Steuerelektronik des SPLAT wurde verbessert, so dass die maximale Analysefrequenz nur durch den Ablationslaser begrenzt wird, der höchsten mit etwa 10 Hz ablatieren kann. Durch eine Optimierung des Vakuumsystems wurde der Ionenverlust im Massenspektrometer um den Faktor 4 verringert.rnrnNeben den hardwareseitigen Weiterentwicklungen des SPLAT bestand ein Großteil dieser Arbeit in der Konzipierung und Implementierung einer Softwarelösung zur Analyse der mit dem SPLAT gewonnenen Rohdaten. CRISP (Concise Retrieval of Information from Single Particles) ist ein auf IGOR PRO (Wavemetrics, USA) aufbauendes Softwarepaket, das die effiziente Auswertung der Einzelpartikel Rohdaten erlaubt. CRISP enthält einen neu entwickelten Algorithmus zur automatischen Massenkalibration jedes einzelnen Massenspektrums, inklusive der Unterdrückung von Rauschen und von Problemen mit Signalen die ein intensives Tailing aufweisen. CRISP stellt Methoden zur automatischen Klassifizierung der Partikel zur Verfügung. Implementiert sind k-means, fuzzy-c-means und eine Form der hierarchischen Einteilung auf Basis eines minimal aufspannenden Baumes. CRISP bietet die Möglichkeit die Daten vorzubehandeln, damit die automatische Einteilung der Partikel schneller abläuft und die Ergebnisse eine höhere Qualität aufweisen. Daneben kann CRISP auf einfache Art und Weise Partikel anhand vorgebener Kriterien sortieren. Die CRISP zugrundeliegende Daten- und Infrastruktur wurde in Hinblick auf Wartung und Erweiterbarkeit erstellt. rnrnIm Rahmen der Arbeit wurde das SPLAT in mehreren Kampagnen erfolgreich eingesetzt und die Fähigkeiten von CRISP konnten anhand der gewonnen Datensätze gezeigt werden.rnrnDas SPLAT ist nun in der Lage effizient im Feldeinsatz zur Charakterisierung des atmosphärischen Aerosols betrieben zu werden, während CRISP eine schnelle und gezielte Auswertung der Daten ermöglicht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmosphärische Partikel beeinflussen das Klima durch Prozesse wie Streuung, Reflexion und Absorption. Zusätzlich fungiert ein Teil der Aerosolpartikel als Wolkenkondensationskeime (CCN), die sich auf die optischen Eigenschaften sowie die Rückstreukraft der Wolken und folglich den Strahlungshaushalt auswirken. Ob ein Aerosolpartikel Eigenschaften eines Wolkenkondensationskeims aufweist, ist vor allem von der Partikelgröße sowie der chemischen Zusammensetzung abhängig. Daher wurde die Methode der Einzelpartikel-Laserablations-Massenspektrometrie angewandt, die eine größenaufgelöste chemische Analyse von Einzelpartikeln erlaubt und zum Verständnis der ablaufenden multiphasenchemischen Prozesse innerhalb der Wolke beitragen soll.rnIm Rahmen dieser Arbeit wurde zur Charakterisierung von atmosphärischem Aerosol sowie von Wolkenresidualpartikel das Einzelpartikel-Massenspektrometer ALABAMA (Aircraft-based Laser Ablation Aerosol Mass Spectrometer) verwendet. Zusätzlich wurde zur Analyse der Partikelgröße sowie der Anzahlkonzentration ein optischer Partikelzähler betrieben. rnZur Bestimmung einer geeigneten Auswertemethode, die die Einzelpartikelmassenspektren automatisch in Gruppen ähnlich aussehender Spektren sortieren soll, wurden die beiden Algorithmen k-means und fuzzy c-means auf ihrer Richtigkeit überprüft. Es stellte sich heraus, dass beide Algorithmen keine fehlerfreien Ergebnisse lieferten, was u.a. von den Startbedingungen abhängig ist. Der fuzzy c-means lieferte jedoch zuverlässigere Ergebnisse. Darüber hinaus wurden die Massenspektren anhand auftretender charakteristischer chemischer Merkmale (Nitrat, Sulfat, Metalle) analysiert.rnIm Herbst 2010 fand die Feldkampagne HCCT (Hill Cap Cloud Thuringia) im Thüringer Wald statt, bei der die Veränderung von Aerosolpartikeln beim Passieren einer orographischen Wolke sowie ablaufende Prozesse innerhalb der Wolke untersucht wurden. Ein Vergleich der chemischen Zusammensetzung von Hintergrundaerosol und Wolkenresidualpartikeln zeigte, dass die relativen Anteile von Massenspektren der Partikeltypen Ruß und Amine für Wolkenresidualpartikel erhöht waren. Dies lässt sich durch eine gute CCN-Aktivität der intern gemischten Rußpartikel mit Nitrat und Sulfat bzw. auf einen begünstigten Übergang der Aminverbindungen aus der Gas- in die Partikelphase bei hohen relativen Luftfeuchten und tiefen Temperaturen erklären. Darüber hinaus stellte sich heraus, dass bereits mehr als 99% der Partikel des Hintergrundaerosols intern mit Nitrat und/oder Sulfat gemischt waren. Eine detaillierte Analyse des Mischungszustands der Aerosolpartikel zeigte, dass sich sowohl der Nitratgehalt als auch der Sulfatgehalt der Partikel beim Passieren der Wolke erhöhte. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il lavoro di tesi si è svolto in collaborazione con il laboratorio di elettrofisiologia, Unità Operativa di Cardiologia, Dipartimento Cardiovascolare, dell’ospedale “S. Maria delle Croci” di Ravenna, Azienda Unità Sanitaria Locale della Romagna, ed ha come obiettivo lo sviluppo di un metodo per l’individuazione dell’atrio sinistro in sequenze di immagini ecografiche intracardiache acquisite durante procedure di ablazione cardiaca transcatetere per il trattamento della fibrillazione atriale. La localizzazione della parete posteriore dell'atrio sinistro in immagini ecocardiografiche intracardiache risulta fondamentale qualora si voglia monitorare la posizione dell'esofago rispetto alla parete stessa per ridurre il rischio di formazione della fistola atrio esofagea. Le immagini derivanti da ecografia intracardiaca sono state acquisite durante la procedura di ablazione cardiaca ed esportate direttamente dall’ecografo in formato Audio Video Interleave (AVI). L’estrazione dei singoli frames è stata eseguita implementando un apposito programma in Matlab, ottenendo così il set di dati su cui implementare il metodo di individuazione della parete atriale. A causa dell’eccessivo rumore presente in alcuni set di dati all’interno della camera atriale, sono stati sviluppati due differenti metodi per il tracciamento automatico del contorno della parete dell’atrio sinistro. Il primo, utilizzato per le immagini più “pulite”, si basa sull’utilizzo del modello Chan-Vese, un metodo di segmentazione level-set region-based, mentre il secondo, efficace in presenza di rumore, sfrutta il metodo di clustering K-means. Entrambi i metodi prevedono l’individuazione automatica dell’atrio, senza che il clinico fornisca informazioni in merito alla posizione dello stesso, e l’utilizzo di operatori morfologici per l’eliminazione di regioni spurie. I risultati così ottenuti sono stati valutati qualitativamente, sovrapponendo il contorno individuato all'immagine ecografica e valutando la bontà del tracciamento. Inoltre per due set di dati, segmentati con i due diversi metodi, è stata eseguita una valutazione quantitativa confrontatoli con il risultato del tracciamento manuale eseguito dal clinico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi decenni molti autori hanno affrontato varie sfide per quanto riguarda la navigazione autonoma di robot e sono state proposte diverse soluzioni per superare le difficoltà di piattaforme di navigazioni intelligenti. Con questo elaborato vogliamo ricercare gli obiettivi principali della navigazione di robot e tra questi andiamo ad approfondire la stima della posa di un robot o di un veicolo autonomo. La maggior parte dei metodi proposti si basa sul rilevamento del punto di fuga che ricopre un ruolo importante in questo campo. Abbiamo analizzato alcune tecniche che stimassero la posizione del robot in primo luogo nell’ambiente interno e presentiamo in particolare un metodo che risale al punto di fuga basato sulla trasformata di Hough e sul raggruppamento K-means. In secondo luogo presentiamo una descrizione generale di alcuni aspetti della navigazione su strade e su ambienti pedonali.