974 resultados para El-nino
Resumo:
Data compiled within the IMPENSO project. The Impact of ENSO on Sustainable Water Management and the Decision-Making Community at a Rainforest Margin in Indonesia (IMPENSO), http://www.gwdg.de/~impenso, was a German-Indonesian research project (2003-2007) that has studied the impact of ENSO (El Nino-Southern Oscillation) on the water resources and the agricultural production in the PALU RIVER watershed in Central Sulawesi. ENSO is a climate variability that causes serious droughts in Indonesia and other countries of South-East Asia. The last ENSO event occurred in 1997. As in other regions, many farmers in Central Sulawesi suffered from reduced crop yields and lost their livestock. A better prediction of ENSO and the development of coping strategies would help local communities mitigate the impact of ENSO on rural livelihoods and food security. The IMPENSO project deals with the impact of the climate variability ENSO (El Niño Southern Oscillation) on water resource management and the local communities in the Palu River watershed of Central Sulawesi, Indonesia. The project consists of three interrelated sub-projects, which study the local and regional manifestation of ENSO using the Regional Climate Models REMO and GESIMA (Sub-project A), quantify the impact of ENSO on the availability of water for agriculture and other uses, using the distributed hydrological model WaSiM-ETH (Sub-project B), and analyze the socio-economic impact and the policy implications of ENSO on the basis of a production function analysis, a household vulnerability analysis, and a linear programming model (Sub-project C). The models used in the three sub-projects will be integrated to simulate joint scenarios that are defined in collaboration with local stakeholders and are relevant for the design of coping strategies.
Resumo:
Approximately 250,000 measurements made for the pCO2 difference between surface water and the marine atmosphere, ΔpCO2, have been assembled for the global oceans. Observations made in the equatorial Pacific during El Nino events have been excluded from the data set. These observations are mapped on the global 4° × 5° grid for a single virtual calendar year (chosen arbitrarily to be 1990) representing a non-El Nino year. Monthly global distributions of ΔpCO2 have been constructed using an interpolation method based on a lateral advection–diffusion transport equation. The net flux of CO2 across the sea surface has been computed using ΔpCO2 distributions and CO2 gas transfer coefficients across sea surface. The annual net uptake flux of CO2 by the global oceans thus estimated ranges from 0.60 to 1.34 Gt-C⋅yr−1 depending on different formulations used for wind speed dependence on the gas transfer coefficient. These estimates are subject to an error of up to 75% resulting from the numerical interpolation method used to estimate the distribution of ΔpCO2 over the global oceans. Temperate and polar oceans of the both hemispheres are the major sinks for atmospheric CO2, whereas the equatorial oceans are the major sources for CO2. The Atlantic Ocean is the most important CO2 sink, providing about 60% of the global ocean uptake, while the Pacific Ocean is neutral because of its equatorial source flux being balanced by the sink flux of the temperate oceans. The Indian and Southern Oceans take up about 20% each.
Resumo:
Studies addressing climate variability during the last millennium generally focus on variables with a direct influence on climate variability, like the fast thermal response to varying radiative forcing, or the large-scale changes in atmospheric dynamics (e. g. North Atlantic Oscillation). The ocean responds to these variations by slowly integrating in depth the upper heat flux changes, thus producing a delayed influence on ocean heat content (OHC) that can later impact low frequency SST (sea surface temperature) variability through reemergence processes. In this study, both the externally and internally driven variations of the OHC during the last millennium are investigated using a set of fully coupled simulations with the ECHO-G (coupled climate model ECHAMA4 and ocean model HOPE-G) atmosphere-ocean general circulation model (AOGCM). When compared to observations for the last 55 yr, the model tends to overestimate the global trends and underestimate the decadal OHC variability. Extending the analysis back to the last one thousand years, the main impact of the radiative forcing is an OHC increase at high latitudes, explained to some extent by a reduction in cloud cover and the subsequent increase of short-wave radiation at the surface. This OHC response is dominated by the effect of volcanism in the preindustrial era, and by the fast increase of GHGs during the last 150 yr. Likewise, salient impacts from internal climate variability are observed at regional scales. For instance, upper temperature in the equatorial Pacific is controlled by ENSO (El Nino Southern Oscillation) variability from interannual to multidecadal timescales. Also, both the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) modulate intermittently the interdecadal OHC variability in the North Pacific and Mid Atlantic, respectively. The NAO, through its influence on North Atlantic surface heat fluxes and convection, also plays an important role on the OHC at multiple timescales, leading first to a cooling in the Labrador and Irminger seas, and later on to a North Atlantic warming, associated with a delayed impact on the AMO.
Resumo:
The ECHAM-1 T21/LSG coupled ocean-atmosphere general circulation model (GCM) is used to simulate climatic conditions at the last interglacial maximum (Eemian. 125 kyr BP). The results reflect thc expected surface temperature changes (with respect to the control run) due to the amplification (reduction) of the seasonal cycle of insolation in the Northern (Southern) Hemisphere. A number of simulated features agree with previous results from atmospheric GCM simulations e.g. intensified summer southwest monsoons) except in the Northern Hemisphere poleward of 30 degrees N. where dynamical feedback, in the North Atlantic and North Pacific increase zonal temperatures about 1 degrees C above what would be predicted from simple energy balance considerations. As this is the same area where most of the terrestrial geological data originate, this result suggests that previous estimates of Eemian global average temperature might have been biased by sample distribution. This conclusion is supported by the fact that the estimated global temperature increase of only 0.3 degrees C greater than the control run ha, been previously shown to be consistent a with CLIMAP sea surface temperature estimates. Although the Northern Hemisphere summer monsoon is intensified. globally averaged precipitation over land is within about 1% of the present, contravening some geological inferences bur not the deep-sea delta(13)C estimates of terrestrial carbon storage changes. Winter circulation changes in the northern Arabian Sea. driven by strong cooling on land, are as large as summer circulation changes that are the usual focus of interest, suggesting that interpreting variations in the Arabian Sea. sedimentary record solely in terms of the summer monsoon response could sometimes lead to errors. A small monsoonal response over northern South America suggests that interglacial paleotrends in this region were not just due to El Nino variations.
Resumo:
The permanent exhibition of the Staatliches Museum für Naturkunde Stuttgart, Schloss Rosenstein, contains the cross section of a California coast redwood tree (Sequoia sempervirens) from Humboldt County, California, felled in 1966 reveals 1285 annual tree-rings. The measured thicknesses of tree-rings comprise a time series with distinct thickness variations, which are the expression of changing environmental conditions such as precipitation and fog. These factors are controlled by nearby coastal upwelling, which is again influenced by El Nino-Southern Oscillation (ENSO), and which in turn can be influenced by variations of solar radiance. In fact, the tree-ring time series comprises evidence for three orders of solar cycles that may have indirectly controlled tree growth: Hale cycle (21.9 yr), Gleissberg cycle (88.6 yr) and De Vries cycle (209.8 yr). These interpretations should, however, be treated with caution, because it is the only cross section known and the acquirement of reliable data requires cross dating of several sections. (was: The cross section of a California coast redwood tree (Sequoia sempervirens) felled in 1966 reveals 1285 annual tree-rings. The measured thicknesses of tree-rings comprise a time series with distinct thickness variations, which are the expression of changing environmental conditions such as precipitation and fog. These factors are controlled by nearby coastal upwelling, which is again influenced by El Nino-Southern Oscillation (ENSO), and which in turn can be influenced by variations of solar radiance. In fact, the tree-ring time series comprises evidence for three orders of solar cycles that may have indirectly controlled tree growth: Hale cycle (21.9 yr), Gleissberg cycle (88.6 yr) and De Vries cycle (209.8 yr).
Resumo:
"October 1985".
Resumo:
The growth dynamics of green sea turtles resident in four separate foraging grounds of the southern Great Barrier Reef genetic stock were assessed using a nonparametric regression modeling approach. Juveniles recruit to these grounds at the same size, but grow at foraging-ground-dependent rates that result in significant differences in expected size- or age-at-maturity. Mean age-at-maturity was estimated to vary from 25-50 years depending on the ground. This stock comprises mainly the same mtDNA haplotype, so geographic variability might be due to local environmental conditions rather than genetic factors, although the variability was not a function of latitudinal variation in environmental conditions or whether the food stock was seagrass or algae. Temporal variability in growth rates was evident in response to local environmental stochasticity, so geographic variability might be due to local food stock dynamics. Despite such variability, the expected size-specific growth rate function at all grounds displayed a similar nonmonotonic growth pattern with a juvenile growth spurt at 60-70 cm curved carapace length, (CCL) or 15-20 years of age. Sex-specific growth differences were also evident with females tending to grow faster than similar-sized males after the Juvenile growth spurt. It is clear that slow sex-specific growth displaying both spatial and temporal variability and a juvenile growth spurt are distinct growth behaviors of green turtles from this stock.