997 resultados para Ehrenfest classical quantum theorem
Resumo:
General relativity and quantum mechanics are not consistent with each other. This conflict stems from the very fundamental principles on which these theories are grounded. General relativity, on one hand, is based on the equivalence principle, whose strong version establishes the local equivalence between gravitation and inertia. Quantum mechanics, on the other hand, is fundamentally based on the uncertainty principle, which is essentially nonlocal. This difference precludes the existence of a quantum version of the strong equivalence principle, and consequently of a quantum version of general relativity. Furthermore, there are compelling experimental evidences that a quantum object in the presence of a gravitational field violates the weak equivalence principle. Now it so happens that, in addition to general relativity, gravitation has an alternative, though equivalent, description, given by teleparallel gravity, a gauge theory for the translation group. In this theory torsion, instead of curvature, is assumed to represent the gravitational field. These two descriptions lead to the same classical results, but are conceptually different. In general relativity, curvature geometrizes the interaction while torsion, in teleparallel gravity, acts as a force, similar to the Lorentz force of electrodynamics. Because of this peculiar property, teleparallel gravity describes the gravitational interaction without requiring any of the equivalence principle versions. The replacement of general relativity by teleparallel gravity may, in consequence, lead to a conceptual reconciliation of gravitation with quantum mechanics. © 2006 American Institute of Physics.
Resumo:
In recent years quaternionic functions have been an intense and prosperous object of research, and important results were determined [1]-[6]. Some of these results are similar to well known cases in one complex variable, op. cit. [5], [6]. In this paper the hypercomplex expansion of a function in a power series as well as determination of a Liouville's type theorem have been investigated to the quaternionic functions. In this case, it is observed that the Liouville's type theorem is true for second order derivatives, which differs from its classical version. © 2011 Academic Publications, Ltd.
Resumo:
Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.
Resumo:
We apply a physical principle, previously used to eliminate ambiguities in quantum corrections to the two-dimensional kink, to the case of spinning strings moving in AdS4×CP3, thought of as another kind of two-dimensional soliton. We find that this eliminates the ambiguities and selects the result compatible with AdS/CFT, providing a solid foundation for one of the previous calculations, which found agreement. The method can be applied to other classical string «solitons.» © 2013 World Scientific Publishing Company.
Resumo:
We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The focus of this paper is to address some classical results for a class of hypercomplex numbers. More specifically we present an extension of the Square of the Error Theorem and a Bessel inequality for octonions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
This undergraduate thesis aims formally define aspects of Quantum Turing Machine using as a basis quantum finite automata. We introduce the basic concepts of quantum mechanics and quantum computing through principles such as superposition, entanglement of quantum states, quantum bits and algorithms. We demonstrate the Bell's teleportation theorem, enunciated in the form of Deutsch-Jozsa definition for quantum algorithms. The way as the overall text were written omits formal aspects of quantum mechanics, encouraging computer scientists to understand the framework of quantum computation. We conclude our thesis by listing the Quantum Turing Machine's main limitations regarding the well-known Classical Turing Machines
Resumo:
We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]
Resumo:
A dimensional analysis of the classical equations related to the dynamics of vector-borne infections is presented. It is provided a formal notation to complete the expressions for the Ross' threshold theorem, the Macdonald's basic reproduction "rate" and sporozoite "rate", Garret-Jones' vectorial capacity and Dietz-Molineaux-Thomas' force of infection. The analysis was intended to provide a formal notation that complete the classical equations proposed by these authors.
Resumo:
In this work, we present a supersymmetric extension of the quantum spherical model, both in components and also in the superspace formalisms. We find the solution for short- and long-range interactions through the imaginary time formalism path integral approach. The existence of critical points (classical and quantum) is analyzed and the corresponding critical dimensions are determined.