999 resultados para Efluentes urbanos
Resumo:
The employment of local soils for extraction of metallic elements was evaluated through batch tests to treat wastewaters generated in a petroleum refinery plant in southern Brazil. Clay and organic carbon content and clay mineralogy provide these soils, in principle, with moderate metal retention capacity. The following retention order was established: Cr3+ > Pb2+ > Cu2+ > Hg2+ > Cd2+, with total amount of metals retained varying from 36 to 65 meq kg-1. The results show the high efficiency of local soils for extracting metals from liquid effluents through sorption and precipitation processes under acid pH conditions.
Resumo:
In an effort to minimize the impact on the environment, removal of pollutants, such as phenolic compounds, from the industrial wastewater has great importance nowadays because of the high toxicity and low biodegradability of these compounds. This work discusses the different methods to remove these compounds from industrial wastewater, showing their advantages and disadvantages. Advanced Oxidation Process (AOPs) are presented as a promising technology for the treatment of wastewater containing phenolic compounds. Among the AOPs, photolysis, photocatalysis and the processes based on hydrogen peroxide and on ozone are discussed with emphasis on the combined processes and the oxidation mechanisms.
Resumo:
The importance of urban solid waste integrated systems is characterized by the several components of these systems, which are, basically, formed by physical, chemical and biological methods. This article, characterizes these methods and, which is also important, identifies the several and potential environmental impacts of those techniques. It's also extremely important to make a study of the economic rentability of those infrastructures and, also, characterize the quantitative energetic contributions of some components of these systems. This study was analysed and their results are presented in this article.
Resumo:
Red mud is the principal residue of the alumina (Al2O3) industry. Generated during the Bayer process, it is characterized by strong alkalinity and ion exchange. Iron oxides are the principal component (30 to 60%). Annually millions of tons of red mud are generated in the world. Red mud disposal is responsible for a large part of the cost of alumina production. On the other hand, textile industry wastewaters containing dyes have a great impact on the environment and on human health. In this paper the possibility of applying red mud for the removal of dyes was investigated by two processes: adsorption and degradation by the Fenton reagent.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.
Resumo:
This study examined the spatial and temporal variations of 13 physico-chemical parameters in water and sediment samples collected along the rural and urban section of Verruga Stream. The metal concentrations were determined by FAAS. The conductivity and the concentration of Na+, Cl-, and Ca2+ showed the largest variations in the urban area demonstrating that these parameters are appropriate indicators of urban contamination. The application of cluster and principal component analysis showed that the Cd2+ and Mn2+ are associated with the use of fertilizers in the rural area.
Resumo:
This work aimed to carry out an environmental monitoring in sabino narrow river (affluent of Tibiri Basin, in São Luís - MA, Brazil), in order to verify the main environmental impacts caused by effluent residues from Ribeira landfill. Chemical analysis and bibliographic and cartographic researches on this ecosystem were also carried out. In addition, heavy metals, such as Hg, Pb and Zn, were investigated in water samples by ICP-MS technique. It was observed that the contents of such heavy metals were above the tolerance limits established by the Brazilian legislation, showing a strong impact level on the evaluated ecosystem.
Resumo:
In this work the potentiality of reductive-oxidative processes based on zero-valent iron was studied aiming the degradation of nitroaromatic compounds and the remediation of residues from the explosive industry. The reductive process was applied as a continuous treatment system, using steel-wool as zero-valent iron source. The process permitted an almost total degradation of nitrobenzene, nitrophenol, nitrotoluene, dinitrotoluene and trinitrotoluene, probably with generation of the respective amine-derivative. The yellow-water residue, containing soluble trinitrotoluene, was notably modified by the reductive process, a fact that permitted a substantial enhancement of its biodegradability. Furthermore, the subsequent photo-Fenton process allowed TOC removal of about 80%.
Resumo:
This study examined the spatial and temporal variations of six important parameters of the salt accumulation process in water samples collected along section urban of Contas River. The Na+, K+, Ca2+ and Mg2+ concentrations were determined by FAAS. The conductivity, total dissolved solids, Na+ and Ca2+ presented the largest seasonal and spatial variations in the urban area demonstrated that are appropriate indicators of urban contamination. The readily soluble salts in drainage urban, contribute for the degradation of the water of rivers located in semi-arid zones.
Resumo:
From the environmental point of view, the textile sector is outstanding for the generation of large amounts of biorecalcitrant effluents. In this paper the textile effluent biodegradability, both before and after its treatment with Fenton's Reagent, were compared by means of biologic tests. These tests showed that the Fenton treatment lowered the biodegradabilty of practically all tested effluents, except one specific effluent from a scouring bath of polyester fibers, which achieved a 93% COD removal. This removal was due to a significant phase separation (oil/water).
Resumo:
This work discusses an analytical procedure for analysis of sulfur compounds in treated petroleum refinery gaseous effluents using a sulfur chemiluminescence detector with dual plasma burner (SCD-DP). Calibration was accomplished by using standards and gaseous streams of known concentration of sulfur compounds. The response factors agree with the calibration table of ASTM standard D 5504 (2008). The detection range for sulfur compounds is in μg m-3. The analytical procedure allowed the construction of a chromatographic chart of sulfur compounds present in several refinery gaseous effluents. SO2 was the most difficult compound to be determined because of its high reactivity.
Resumo:
Land reclamation fills in the city of Rio Grande (RS) are polluted by mercury with concentrations ranging from 0.3 to 18.7 mg kg-1. The level of Hg pollution decreases from the oldest landfills of 18th century to recent ones. Mercury distribution along vertical profiles resembles the same for copper, lead, and zinc, what allow supposing that mercury distribution has an autochthonous character. It is suggested that the principal source of mercury pollution was the activities related to animal skin and fair hair treatment, using ancient technology known as "carroting". Similar scenario of environmental risk could be met in other Brazilian cities with similar colonization history.
Resumo:
This work deals with the method validation for the determination of acetic, propionic and butyric acids (VFAs) in wastewaters from anaerobic reactors by HPLC-DAD. Separation was performed using a C18 column and the mobile phase composition were water pH 3.0 and methanol 90:10 (v/v). The detection and quantification was carried out at 220 nm. The method shows good linearity (r²>0.996), with adequate accuracy (89-102%) and relative standard deviations lower than 18%. The matrix effect was considered low (-4.1, -3.9 and 1.4%). The developed method is fast, simple and cheap; and it was applied in wastewater samples from anaerobic reactor.
Resumo:
The wastewaters from biodiesel production contain as primarily wastes sodium or potassium soaps, fatty acids, glycerin, alcohol and other contaminants. In general, these waters are chemically unsuitable for release to any water body, so, it is necessary the adoption of techniques for the treatment of this effluent. In this review, electrochemical, biological, physicochemical, and combined treatments reported for the removal of the wastewater containing pollutants come from biodiesel production have been summarized. In addition, the recovery, the reuse, the energy production and the synthesis of new compounds from the organic matter contained in this kind of effluent are also reviewed.
Resumo:
The removal of important textile dyes by turnip peroxidase (TNP) was evaluated. The textile effluents besides the residual dyes contain also chemical auxiliaries such as salts, dispersing and wetting agents. The effect of these was evaluated in the removal of the dyes reactive blue 21 and reactive blue 19 by TNP in synthetic effluents. A decrease of the efficency decolorization was observed. The action of the enzyme on colour removal of dye mixture was equivalent to the dyes alone. The chemical demand of oxygen in the effluent after enzymatic treatment had a significant increase in relation to the untreated effluent.