991 resultados para Ecuaciones de Lorenz
Resumo:
En este libro, en su primera parte, es estudia e identifica la estructura de una ecuación lineal, y su gráfica en dos y tres variables. En la segunda parte del contenido se expone la teoría del álgebra matricial, que posteriormente será utilizada en la tercera parte para resolver sistemas de ecuaciones lineales; en este sentido, el lector podrá darse cuenta de las bondades de los métodos que se desarrollarán y las aplicaciones que se pueden plantear y resolver con los métodos gaussianos desarrollados en el álgebra lineal. Igualmente, se presentará el uso del MATLAB para la solución de sistemas de ecuaciones lineales y operaciones con matrices, empleando el computador. En la segunda parte del contenido se expone la teoría del álgebra matricial, que posteriormente será utilizada en la tercera parte para resolver sistemas de ecuaciones lineales; en este sentido, el lector podrá darse cuenta de las bondades de los métodos que se desarrollarán y las aplicaciones que se pueden plantear y resolver con los métodos gaussianos desarrollados en el álgebra lineal. Igualmente, se presentará el uso del MATLAB para la solución de sistemas de ecuaciones lineales y operaciones con matrices, empleando el computador.
Resumo:
El trabajo presenta los resultados de la aplicación de una estrategia constructiva para la introducción del tema de las ecuaciones, que toma en cuenta el paso de lo aritmético a lo algebraico y de lo concreto a lo representación en la resolución de las ecuaciones (tanteo sistemático, uso de la balanza, despeje en contexto abstracto, que se centra en la actividad y creatividad del alumno, y que considera el uso de diferentes sistemas de simbólico). El modelo se aplicó a una sección de 6° grado de Educación Básica, integrada por 25 alumnos de ll y 12 años, de una escuela pública de Barquisimeto (Venezuela). Se desarrolló a lo largo de seis sesiones de 90 minutos cada una. Los resultados evidencian que la estrategia implementada resultó exitosa; también resultó motivadora y promotora de la creatividad y la participación. En cuanto a los aprendizajes evidenciados durante la experiencia, cabe destacar que los alumnos reconocen el carácter bidireccional que tiene el signo de la igualdad en álgebra y la equivalencia de los miembros de una ecuación, identifican la incógnita en una ecuación como un número desconocido, e interpretan ese número como solución de la ecuación; también, que llegan a dotar de significado al algoritmo convencional de despeje.
Resumo:
A partir de la hipótesis de que una relación simbiótica entre las nociones de predicción y de simulación sea el eje del cálculo integral escolar, reportamos, aquí, algunos resultados de nuestro trabajo con estudiantes universitarios con los que hemos explorado aspecto de la simulación en las ecuaciones diferenciales lineales de primer orden. Favoreciendo la idea de simulación, se trabajó con la ecuación diferencial, dónde se variaron uno a uno los parámetros a, b y c. Encontramos un argumento gráfico que atiende las tendencias de las gráficas, ya sea en una suma de funciones, en la variación de los parámetros o en la forma de la gráfica de la solución de las ecuaciones diferenciales, favorecidos por los dispositivos tecnológicos permiten concebir a una función globalmente.
Resumo:
El presente trabajo asume como referente teórico la evaluación del aprendizaje desarrollado en la tesis de doctorado de la autora principal del trabajo (Pérez, 2000), en este sentido la evaluación toma un matiz diferente y está presente desde que planificamos y organizamos el proceso de enseñanza aprendizaje. Paralelamente a esto se muestra el papel y la utilidad de las calculadoras gráficas en la enseñanza de las matemáticas, mostrándose como un recurso más en el quehacer didáctico de los maestros o de una herramienta al servicio de los maestros y alumnos. En el trabajo se muestra cómo lograr el diseño de una unidad en las matemáticas a partir del tema de ecuaciones de segundo grado. Esta propuesta ha sido utilizada en diversos cursos de didáctica de las matemáticas en maestrías de enseñanzas de las ciencias y en cursos independientes para la formación del personal docente, obteniéndose resultados alentadores en el trabajo de los maestros y alumnos.
Resumo:
El objetivo esencial del trabajo es emitir una propuesta metodológica, como vía alternativa, para abordar la resolución de ciertos Sistemas de Ecuaciones Diferenciales Lineales (SEDL) expresables en forma normal, usando métodos matriciales, a partir del empleo de la diagonalimción y normalización de matrices a través de la matriz normal de Jordan y usando para ello un procedimiento único, basado en el método analítico que es empleado para resolver la ecuación diferencial lineal de primer orden dada en su forma característica, sin soslayar, la obligada extensión a este contexto. Desde el punto de vista didáctico, la metodología general que se propone, para la resolución de estos SEDL es una de sus mayores ventajas metodológicas, ya que, precisamente, proporciona una vía operacional única y fija, con las obligadas transferencias contextuales que fueron señaladas, esperándose lograr una estructuración sistémica de los contenidos asociados al tema, en aras de alcanzar mayores niveles de asequibilidad dentro del proceso de asimilación.
Resumo:
El trabajo presenta reflexiones derivadas del accionar con un grupo de estudiantes de la secundaria básica "William Soler" del municipio Centro Habana, en la capital cubana. Se realiza una breve explicación de cómo se desarrollaron las clases: primero las de traducción del lenguaje común al algebraico, después clases donde se realizó la comprensión y la búsqueda de la vía de solución y finalmente las clases de resolución de problemas. Se propone hacer uso del algoritmo para la comprensión de texto, de la asignatura Español, haciéndole una adecuación al contexto de la comprensión de problemas del tipo que nos ocupa. En las conclusiones se presentan algunos resultados cuantitativos y desde el punto de vista de las características personológicas de los estudiantes, obtenidas de la experiencia.
Resumo:
Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.
Resumo:
to assess how nurses perceive autonomy, control over the environment, the professional relationship between nurses and physicians and the organizational support and correlate them with burnout, satisfaction at work, quality of work and the intention to quit work in primary healthcare. cross-sectional and correlation study, using a sample of 198 nurses. The tools used were the Nursing Work Index Revised, Maslach Burnout Inventory and a form to characterize the nurses. To analyze the data, descriptive statistics were applied and Spearman's correlation coefficient was used. the nurses assessed that the environment is partially favorable for: autonomy, professional relationship and organizational support and that the control over this environment is limited. Significant correlations were evidenced between the Nursing Work Index Revised, Maslach Burnout Inventory and the variables: satisfaction at work, quality of care and the intent to quit the job. the nurses' perceptions regarding the environment of practice are correlated with burnout, satisfaction at work, quality of care and the intent to quit the job. This study provides support for the restructuring of work processes in the primary health care environment and for communication among the health service management, human resources and occupational health areas.
Resumo:
A combination of trajectory sensitivity method and master-slave synchronization was proposed to parameter estimation of nonlinear systems. It was shown that master-slave coupling increases the robustness of the trajectory sensitivity algorithm with respect to the initial guess of parameters. Since synchronization is not a guarantee that the estimation process converges to the correct parameters, a conditional test that guarantees that the new combined methodology estimates the true values of parameters was proposed. This conditional test was successfully applied to Lorenz's and Chua's systems, and the proposed parameter estimation algorithm has shown to be very robust with respect to parameter initial guesses and measurement noise for these examples. Copyright (C) 2009 Elmer P. T. Cari et al.
Resumo:
In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type R(epsilon) = {(x(1), x(2)) is an element of R(2) vertical bar x(1) is an element of (0, 1), 0 < x(2) < epsilon G(x(1), x(1)/epsilon)} where the function G(x, y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter epsilon. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
For the first time, we introduce and study some mathematical properties of the Kumaraswamy Weibull distribution that is a quite flexible model in analyzing positive data. It contains as special sub-models the exponentiated Weibull, exponentiated Rayleigh, exponentiated exponential, Weibull and also the new Kumaraswamy exponential distribution. We provide explicit expressions for the moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, reliability and Renyi entropy. The moments of the order statistics are calculated. We also discuss the estimation of the parameters by maximum likelihood. We obtain the expected information matrix. We provide applications involving two real data sets on failure times. Finally, some multivariate generalizations of the Kumaraswamy Weibull distribution are discussed. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
Resumo:
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.
Resumo:
Experimental suppression of chaos has been achieved in an optically pumped far-infrared (NH3)-N-15 laser which displays Lorenz-like chaos. The method of control involves the application of a large amplitude slow (i.e., nonresonant) modulation of the pump power. This may be related to a delayed bifurcation to chaos observed when the pump power is ramped at a constant late.
Resumo:
The nonlinear response of a chaotic system to a chaotic variation in a system parameter is investigated experimentally. Clear experimental evidence of frequency entrainment of the chaotic oscillations is observed. We show that analogous to the frequency locking between coupled periodic oscillations, this effect is generic for coupled chaotic systems.
Resumo:
We report on the experimental observation of the generalized synchronization of chaos in a real physical system. We show that under a nonlinear resonant interaction, the chaotic dynamics of a single mode laser can become functionally related to that of a chaotic driving signal and furthermore as the coupling strength is further increased, the chaotic dynamics of the laser approaches that of the driving signal.