996 resultados para ETHYLENE-POLYMERIZATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well-mixed blends of poly(ethylene) and poly(styrene) have been synthesized using supercritical carbon dioxide as a solvent. The morphology of the blends has been conclusively characterized using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), Raman microprobe microscopy, and C-13 solid-state cross-polarization magic angle spinning NMR (C-13 CPMAS NMR). DSC measurements demonstrate that poly(styrene) in the blends resides solely in the amorphous regions of the poly(ethylene) matrix; however, corroborative evidence from the SAXS experiments shows that poly(styrene) resides within the interlamellar spaces. The existence of nanometer-sized domains of poly(styrene) was shown within a blend of poly(styrene) and poly(ethylene) when formed in supercritical carbon dioxide using Raman microprobe microscopy and C-13 CPMAS NMR spectroscopy coupled with a spin diffusion model. This contrasts with blends formed at ambient pressure in the absence of solvent, in which domains of poly(styrene) in the micrometer size range are formed. This apparent improved miscibility of the two components was attributed to better penetration of the monomer prior to polymerization and increased swelling of the polymer substrate by the supercritical carbon dioxide solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of amphiphilic poly(ethylene glycol)-block-poly(bisphenol A carbonate) (PEG-b-PC) block copolymer is presented here using a simple bio-chemistry coupling reaction between poly(bisphenol A carbonate) (PC) with a monomethylether poly(ethylene glycol) (mPEG-OH) block, mediated by dicyclohexylcarbodiimide/4-dimethylaminopyridine. This method inherently allows great flexibility in the choice of starting materials as well as easy product purification only requiring phase separation and water washing. Collective data from Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and modulated dynamic scanning calorimetry (MDSC) confirmed the successful attachment of the poly(ethylene glycol) (mPEG-OH) and poly(bisphenol A carbonate) (PC) blocks. The preparation of nano-capsules was carried out by sudden addition of water to PEG-b-PC copolymers dispersed in THF, resulting in the controlled precipitation (i.e. thermodynamic entrapment) of the copolymer. Nano-capsules as small as 85 nm ± 30 nm were produced using this simple and fast methodology. We also demonstrate that encapsulating a water-insoluble bisphenol A diglycidyl ether (DGEBA) epoxy resin is possible highlighting the potential use of these capsules as a chemical delivery system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report for the first time the use of Nα-Boc-l-tryptophan for the synthesis of amphiphilic BAB triblock copolymers for potential drug delivery applications. A library of poly(Nα-Boc-l-tryptophan)-block-poly(ethylene glycol)-block-poly(Nα-Boc-l-tryptophan) (PBoclTrp-b-PEG-b-PBoclTrp) amphiphilic copolymers were synthesized through the ring opening polymerization of Nα-Boc-l-tryptophan Nα-carboxy anhydride as initiated by diamino-terminated PEG of fixed molecular weight (Mn 3350). The influence of the hydrophobic block length over self-assembly was investigated for 4 of the BAB copolymers of molecular weights varying between Mn 5000 and Mn 17000. It was found that an increase in hydrophobic block length led to an increase in hydrodynamic size of aggregates in solution, as well as a decrease in critical micelle concentration. TEM analysis showed the formation of spherical micelles with the largest of the copolymers forming interconnected networks of spherical micelles. The influence of hydrophobic block length over the formation of secondary structure was analyzed using circular dichroism and infrared spectroscopy. Collectively we found that the presence of t-Boc protected l-tryptophan leads to the preferential formation of α-helix secondary structure through hydrogen bonding, which, in a drug delivery vehicle context, could help in controlling drug release. Also, it is believed that the use of novel Nα-Boc-l-tryptophan could improve drug stabilization in the hydrophobic core via π-π interactions between indole rings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New composite doped poly (ethylene oxide) polymer electrolyte was developed using 2-mercapto benzimidazole as plasticizer and iodide/triiodide as redox couple. The fabrication of the cell involves Poly(ethylene oxide)/ 2-mercapto benzimidazole / iodide/triiodide as polymer electrolyte in dye-sensitized solar cell fabricated with N3 dye and TiO2 nanoparticles as the photoanode and Platinum coated FTO (fluorine doped SnO2) as counter electrode. The current-volatage characteristics under simulated sunlight AM1.5 shows a short circuit current Isc of 8.7mA and open circuit photovoltage 508 mV. The conductivity measurements for the new polymer electrolyte and the photoelectrochemical measurments were carried out systematically. In 2-mercapto benzimidazole the electron rich sulphur and nitrogen atoms, act as pi-electron donors that form good interaction with iodine which plays a vital role in the performance of the fabricated dye-sensitized solar cells. The resonance effect increases the stability of the cell to a considerable extent. These results suggest that the new composite polymer electrolyte performs as a promising new doped polymer-electrolyte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared by stereolithography. A photo-polymerisable liquid resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Hydrogels with welldefined architectures and good mechanical properties were prepared. Hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated on these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melt electrospinning is one aspect of electrospinning with relatively little published literature, although the technique avoids solvent accumulation and/or toxicity which is favoured in certain applications. In the study reported, we melt-electrospun blends of poly(ε-caprolactone) (PCL) and an amphiphilic diblock copolymer consisting of poly(ethylene glycol) and PCL segments (PEG-block-PCL). A custom-made electrospinning apparatus was built and various combinations of instrument parameters such as voltage and polymer feeding rate were investigated. Pure PEG-block-PCL copolymer melt electrospinning did not result in consistent and uniform fibres due to the low molecular weight, while blends of PCL and PEG-block-PCL, for some parameter combinations and certain weight ratios of the two components, were able to produce continuous fibres significantly thinner (average diameter of ca 2 µm) compared to pure PCL. The PCL fibres obtained had average diameters ranging from 6 to 33 µm and meshes were uniform for the lowest voltage employed while mesh uniformity decreased when the voltage was increased. This approach shows that PCL and blends of PEG-block-PCL and PCL can be readily processed by melt electrospinning to obtain fibrous meshes with varied average diameters and morphologies that are of interest for tissue engineering purposes. Copyright © 2010 Society of Chemical Industry