840 resultados para ESTs, genomics, invasive species, maternal effects, rapid adaptation, selection, Senecio madagascariensis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genus Asparagus includes at least six invasive species in Australia. Asparagus aethiopicus and A. africanus are invasive in subtropical Australia, and a third species, A. virgatus is naturalized and demonstrates localized spread in south east Queensland. To better understand how the attributes of these species contribute to their invasiveness, we compared fruit and seed traits, germination, seedling emergence, seed survival, and time-to-maturity. We further investigated dispersal ecology of A. africanus, examining the diet of a local frugivore, the figbird (Sphecotheres viridis) and the effect of gut passage on seedling emergence. Overall, A. aethiopicus was superior in germination and emergence, with the highest mean germination (98.8%) and emergence (94.5%) under optimal conditions and higher emergence (mean of 73.3%) across all treatments. In contrast, A. africanus had the lowest germination under optimal conditions (71.7%) and low mean seedling emergence (49.5%), but had fruits with the highest relative yield (ratio of dry pulp to fruit fresh weight) that were favored by a local frugivore. Figbirds consumed large numbers of A. africanus fruits (~30% of all non-Ficus fruits), and seedling germination was not significantly affected by gut passage compared to unprocessed fruits. Asparagus virgatus germinated poorly under cool, light conditions (1.4%) despite a high optimum mean (95.0%) and had low mean performance across emergence treatments (36.3%). The species also had fruits with a low pulp return for frugivores. For all species, seed survival declined rapidly in the first 12 mo and fell to < 3.2% viability at 36 mo. On the basis of the traits considered, A. virgatus is unlikely to have the invasive potential of its congeners. Uniformly short seed survival times suggest that weed managers do not have to contend with a substantial persistent soil-stored seed bank, but frugivore-mediated dispersal beyond existing infestations will present a considerable management challenge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Resolving the origin of invasive plant species is important for understanding the introduction histories of successful invaders and aiding strategies aimed at their management. This study aimed to infer the number and origin(s) of introduction for the globally invasive species, Macfadyena unguis-cati and Jatropha gossypiifolia using molecular data. Location: Native range: Neotropics; Invaded range: North America, Africa, Europe, Asia, Pacific Islands and Australia. Methods: We used chloroplast microsatellites (cpSSRs) to elucidate the origin(s) of introduced populations and calculated the genetic diversity in native and introduced regions. Results: Strong genetic structure was found within the native range of M. unguis-cati, but no genetic structuring was evident in the native range of J. gossypiifolia. Overall, 27 haplotypes were found in the native range of M. unguis-cati. Only four haplotypes were found in the introduced range, with more than 96% of introduced specimens matching a haplotype from Paraguay. In contrast, 15 haplotypes were found in the introduced range of J. gossypiifolia, with all invasive populations, except New Caledonia, comprising multiple haplotypes. Main conclusions: These data show that two invasive plant species from the same native range have had vastly different introduction histories in their non-native ranges. Invasive populations of M. unguis-cati probably came from a single or few independent introductions, whereas most invasive J. gossypiifolia populations arose from multiple introductions or alternatively from a representative sample of genetic diversity from a panmictic native range. As introduced M. unguis-cati populations are dominated by a single haplotype, locally adapted natural enemies should make the best control agents. However, invasive populations of J. gossypiifolia are genetically diverse and the selection of bio-control agents will be considerably more complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exotic and invasive woody vines are major environmental weeds of riparian areas, rainforest communities and remnant natural vegetation in coastal eastern Australia, where they smother standing vegetation, including large trees, and cause canopy collapse. We investigated, through glasshouse resource manipulative experiments, the ecophysiological traits that might facilitate faster growth, better resource acquisition and/or utilization and thus dominance of four exotic and invasive vines of South East Queensland, Australia, compared with their native counterparts. Relative growth rate was not significantly different between the two groups but water use efficiency (WUE) was higher in the native species while the converse was observed for light use efficiency (quantum efficiency, AQE) and maximum photosynthesis on a mass basis (Amax mass). The invasive species, as a group, also exhibited higher respiration load, higher light compensation point and higher specific leaf area. There were stronger correlations of leaf traits and greater structural (but not physiological) plasticity in invasive species than in their native counterparts. The scaling coefficients of resource use efficiencies (WUE, AQE and respiration efficiency) as well as those of fitness (biomass accumulated) versus many of the performance traits examined did not differ between the two species-origin groups, but there were indications of significant shifts in elevation (intercept values) and shifts along common slopes in many of these relationships – signalling differences in carbon economy (revenue returned per unit energy invested) and/or resource usage. Using ordination and based on 14 ecophysiological attributes, a fair level of separation between the two groups was achieved (51.5% explanatory power), with AQE, light compensation point, respiration load, WUE, specific leaf area and leaf area ratio, in decreasing order, being the main drivers. This study suggests similarity in trait plasticity, especially for physiological traits, but there appear to be fundamental differences in carbon economy and resource conservation between native and invasive vine species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80-96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82-89% and 56-93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5-6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Do alien invasive species exhibit life history characteristics that are similar to those of native species that have become pests in their continent of origin? We compared eucalypt specialists that have become pests in Australian plantations (natives) to those that have established overseas (aliens) using 13 life history traits and found that although traits that support rapid population build-up were shared, overall, aliens and native colonisers differed significantly. Distance from source (New Zealand vs. other) had no significant effect, but species that established more than 50 years ago exhibited different life history traits from those that established within the last 50 years, possibly because of more effective quarantine. Native and alien eucalypt insect invaders differed predominantly in traits that facilitate long-distance movement (pathway traits), compared to traits that facilitate establishment and spread. Aliens had longer adult flight seasons, were smaller and more closely host-associated (cryptic eggs and larvae), had lower incidence of diapause (i.e. were more seasonally plastic) and more generations per year than natives. Thus, studies of species invasive within their country of origin can shed light on alien invasions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Top-predators can play important roles in terrestrial food webs, fuelling speculation that top-predators might be used as biocontrol tools against invasive mesopredators. Feral cats are believed to be largely responsible for the current declines of native fauna across tropical northern Australia, where substantial beef cattle production occurs. Dingoes are known to impact cattle production there and are predicted to impact native fauna also. However, dingoes are forecasted to curtail the impacts of cats and reverse native fauna declines. We review (1) empirical studies investigating the relationships between dingoes and cats, and dingo control and cats, (2) records of cat remains in dingo diets, and (3) historical records of lethal dingo control using 1080-poisoned baits across Australia between 1999 and 2008 to show how two naturalised invasive species can interact in dynamic agro-ecological landscapes. From the 35 studies assessed, most reported no detectable relationship between dingoes and cats; negative or positive relationships were seldom detected. Dingoes do not appear to exclude cats beyond fine scales, but may alter cat activity periods under certain conditions. Cat remains were found in only 0.63 % of over 31,000 dingo diet records. Lethal dingo control occurs (in varying degrees) across about two-thirds of Australia and does not appear to substantially influence dingo-cat relationships. We conclude that the presently available data provides little evidence that bolstering dingo populations will reduce the impacts of cats. Much more work is needed to identify situations where top-predators might be used as effective biocontrol tools against invasive mesopredators in agro-ecological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Many prey species around the world are suffering declines due to a variety of interacting causes such as land use change, climate change, invasive species and novel disease. Recent studies on the ecological roles of top-predators have suggested that lethal top-predator control by humans (typically undertaken to protect livestock or managed game from predation) is an indirect additional cause of prey declines through trophic cascade effects. Such studies have prompted calls to prohibit lethal top-predator control with the expectation that doing so will result in widespread benefits for biodiversity at all trophic levels. However, applied experiments investigating in situ responses of prey populations to contemporary top-predator management practices are few and none have previously been conducted on the eclectic suite of native and exotic mammalian, reptilian, avian and amphibian predator and prey taxa we simultaneously assess. We conducted a series of landscape-scale, multi-year, manipulative experiments at nine sites spanning five ecosystem types across the Australian continental rangelands to investigate the responses of sympatric prey populations to contemporary poison-baiting programs intended to control top-predators (dingoes) for livestock protection. Results Prey populations were almost always in similar or greater abundances in baited areas. Short-term prey responses to baiting were seldom apparent. Longer-term prey population trends fluctuated independently of baiting for every prey species at all sites, and divergence or convergence of prey population trends occurred rarely. Top-predator population trends fluctuated independently of baiting in all cases, and never did diverge or converge. Mesopredator population trends likewise fluctuated independently of baiting in almost all cases, but did diverge or converge in a few instances. Conclusions These results demonstrate that Australian populations of prey fauna at lower trophic levels are typically unaffected by top-predator control because top-predator populations are not substantially affected by contemporary control practices, thus averting a trophic cascade. We conclude that alteration of current top-predator management practices is probably unnecessary for enhancing fauna recovery in the Australian rangelands. More generally, our results suggest that theoretical and observational studies advancing the idea that lethal control of top-predators induces trophic cascades may not be as universal as previously supposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptation of global food systems to climate change is essential to feed the world. Tropical cattle production, a mainstay of profitability for farmers in the developing world, is dominated by heat, lack of water, poor quality feedstuffs, parasites, and tropical diseases. In these systems European cattle suffer significant stock loss, and the cross breeding of taurine x indicine cattle is unpredictable due to the dilution of adaptation to heat and tropical diseases. We explored the genetic architecture of ten traits of tropical cattle production using genome wide association studies of 4,662 animals varying from 0% to 100% indicine. We show that nine of the ten have genetic architectures that include genes of major effect, and in one case, a single location that accounted for more than 71% of the genetic variation. One genetic region in particular had effects on parasite resistance, yearling weight, body condition score, coat colour and penile sheath score. This region, extending 20 Mb on BTA5, appeared to be under genetic selection possibly through maintenance of haplotypes by breeders. We found that the amount of genetic variation and the genetic correlations between traits did not depend upon the degree of indicine content in the animals. Climate change is expected to expand some conditions of the tropics to more temperate environments, which may impact negatively on global livestock health and production. Our results point to several important genes that have large effects on adaptation that could be introduced into more temperate cattle without detrimental effects on productivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatic embryogenesis (SE) is an asexual form of plant propagation that occurs in nature and mimics many of the events of sexual reproduction. Pinus sylvestris (L.) is an important source of timber in Northern Eurasia but it is recalcitrant to somatic embryogenesis. Several factors important for the success of the P. sylvestris embryogenic cultures have not been thoroughly investigated. In this study, we examined the effects of parental genotypes on the SE in P. sylvestris, the involvement of the gaseous plant growth regulator, ethylene in SE, and also biotic effects on somatic embryos as well as on seedlings. We tested parental effects on immature embryo initiation for different media, storage periods, and on the maturation process. Maternal effects were found to be crucial for SE in the absence of paternal effects. No maternal-paternal interaction was observed at any stage of somatic embryo production. Additionally the role of ethylene at different developmental stages of SE was investigated. Two ACC synthase genes, PsACS1 and PsACS2, were isolated and characterized. PsACS1 was expressed during the proliferation stage in all tested genotypes, whereas PsACS2 was only expressed in somatic embryos of each genotype. Ethylene production in embryos at stage 3 was significantly higher than the other stages. In a parallel study, the response of somatic embryos to fungal elicitors was investigated. Three fungi, a mutualistic ectomycorrhizal (ECM) fungus (Suillus bovinus), a weak Scots pine pathogen (Heterobasidion parviporum) and a strong pathogen (H. annosum) were used. The gene expression patterns for embryos exposed to the H. parviporum elicitor were found to be similar to that documented for S. bovinus among the tested genes. By contrast somatic embryos exposed to the H. annosum elicitor had a different pattern of regulation which was marked by a delayed response, and in some cases death of the embryos. Furthermore, interaction without direct contact between P. sylvestris seedlings and microbes (mutualistic and pathogenic fungus, cyanobacterium) were investigated. Several novel genes expressed in seedlings treated with ECM fungus were isolated which suggested that physical contact is not necessary for elicitation of host responses. The results suggest that somatic embryos and seedlings of P. sylvestris are genetically well equipped to respond to fungal elicitor/exudates and could serve as a suitable model for reproducible molecular studies in conifer tree patho- and symbiotic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problematic of invasive species in an alien environment has aroused the attention of scientists all over the world for quite some time. One of the exotic tree species that has provoked special attention in the tropical drylands is Prosopis juliflora. Originating in South America, prosopis (hereafter referred to as prosopis) has been introduced in the hot and semi-arid zones of the world particularly to provide fuelwood, to stabilize sand dunes and to combat desertification. The tree has become an essential source for fuelwood and a provider of several other products and services in areas where it has become established. However, despite the numerous benefits the tree provides to rural people, in several regions prosopis has become a noxious weed with a negative impact on the environment and to the economy of farmers and landowners. In India, prosopis was introduced in Andhra Pradesh in 1877. The tree was then proclaimed as the precious child of the plant world by scientists and local people alike. The purpose of this study was to investigate the overall impact of prosopis on local rural livelihoods in the drylands of South India. Of particular interest was the examination of the different usages of the tree, especially as fuelwood, and people s perceptions of it. Furthermore, the study examined the negative impacts of the uncontrolled invasion of prosopis on croplands, and its occupation of the banks of irrigation canals and other water sources. As another central theme, this study analysed the Hindu classification system for nature and for trees in particular. In India, several tree species are regarded as sacred. This study examined the position of the exotic prosopis among sacred trees, such as the bodhi, banyan and neem trees. The principle method for collecting the field data was by using individual and thematic group interviews. These interviews were semi-structured with open ended questions. Moreover, unstructured interviews as well as general observations provided complementary information. The data were gathered during two fieldwork periods in the states of Andhra Pradesh and Tamil Nadu, in South India. The results confirmed that prosopis both provides benefits and causes hazards to different stakeholders. Farmers and agriculturalists suffer economic losses in areas where prosopis has invaded crop fields and competes with other plants for water and nutrients. On the other hand, for a significant number of poor rural people, prosopis has become an important source of livelihood benefits. This tree, which grows on government wastelands, is commonly a free resource for all and has thus become a major local source of fuelwood. It also provides several other goods and services and cash income that contributes to improve livelihoods in rural communities. Prosopis ranked lowest in the tree classificatioin system of the Hindus of South India. Although it is appreciated for many benefits it provides for poor people, it has remained an outsider compared with the indigenous tree species. On the other hand, the most sacred trees, such as the bodhi or the banyan, are completely excluded from extraction and it is seen as a sacrilege to even cut branches from any of these trees. An unexpected finding was that, in a few cases, prosopis had also been elevated to the status of a sacred tree. Goods and services from prosopis are not utilized in the most beneficial way. Silvicultural management practices are suggested that would provide additional income and employment opportunities. Interventions are recommended to control further invasion of the tree that might cause serious negative effects in the future. For Hindus, the sacred always ranks highest, even above economic gain. The conservation of sacred groves and sacred trees is a tradition that has its roots in ancient history. These socio-religious practices need to be respected and continued. Successful management of tree and forest resources depends on the willingness of the local people to manage their natural resources, and this willingness exists and has always existed in South India. Keywords: South India, drylands, livelihood, fuelwood, invasive, resource, silviculture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diesel spills contaminate aquatic and terrestrial environments. To prevent the environmental and health risks, the remediation needs to be advanced. Bioremediation, i.e., degradation by microbes, is one of the suitable methods for cleaning diesel contamination. In monitored natural attenuation technique are natural processes in situ combined, including bioremediation, volatilization, sorption, dilution and dispersion. Soil bacteria are capable of adapting to degrade environmental pollutants, but in addition, some soil types may have indigenous bacteria that are naturally suitable for degradation. The objectives for this work were (1) to find a feasible and economical technique to remediate oil spilled into Baltic Sea water and (2) to bioremediate soil contaminated by diesel oil. Moreover, the aim was (3) to study the potential for natural attenuation and the indigenous bacteria in soil, and possible adaptation to degrade diesel hydrocarbons. In the aquatic environment, the study concentrated on diesel oil sorption to cotton grass fiber, a natural by-product of peat harvesting. The impact of diesel pollution was followed in bacteria, phytoplankton and mussels. In a terrestrial environment, the focus was to compare the methods of enhanced biodegradation (biostimulation and bioaugmentation), and to study natural attenuation of oil hydrocarbons in different soil types and the effect that a history of previous contamination may have on the bioremediation potential. (1) In the aquatic environment, rapid removal of diesel oil was significant for survival of tested species and thereby diversity maintained. Cotton grass not only absorbed the diesel but also benefited the bacterial growth by providing a large colonizable surface area and hence oil-microbe contact area. Therefore use of this method would enhance bioremediation of diesel spills. (2) Biostimulation enhances bioremediation, and (3) indigenous diesel-degrading bacteria are present in boreal environments, so microbial inocula are not always needed. In the terrestrial environment experiments, the combination of aeration and addition of slowly released nitrogen advanced the oil hydrocarbon degradation. Previous contamination of soil gives the bacterial community the potential for rapid adaptation and efficient degradation of the same type of contaminant. When the freshly contaminated site needs addition of diesel degraders, previously contaminated and remediated soil could be used as a bacterial inoculum. Another choice of inoculum could be conifer forest soil, which provides a plentiful population of degraders, and based on the present results, could be considered as a safe non-polluted inoculum. According to the findings in this thesis, bioremediation (microbial degradation) and monitored natural attenuation (microbial, physical and chemical degradation) are both suitable techniques for remediation of diesel-contaminated sites in Finland.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Habitat fragmentation, anthropogenic disturbance and the introduction of invasive species are factors thought to structure ant assemblages. To understand responses of the ant community to changes in the environment, ants are commonly categorised into functional groups, a scheme developed and based on Australian ants. 2. Behaviourally dominant and aggressive ants of the dominant dolichoderinae functional group have been suggested to structure the ant assemblages in arid and semi-arid habitats of these regions. Given the limited geographical distribution of dominant dolichoderinae, it is crucial to determine the responses of the ant community to changes in the environment in their absence. 3. This study addresses this less studied aspect by considering the associations of ants of Western Ghats, India, with habitat, anthropogenic disturbance and introduced ants. We determined how ant functional groups respond to these factors in this region, where dominant dolichoderines are naturally absent, and whether responses are consistent with predictions derived from the ant functional group scheme. 4. This study provides new information on ant assemblages in a little-studied region. As in other parts of the world, ant assemblages in Western Ghats were strongly influenced by habitat and disturbance, with different functional groups associated with different habitats and levels of disturbance. 5. No functional group showed evidence of being influenced by the abundance of introduced species. In addition, predictions of negative interactions between functional groups were not supported. Our findings suggest that abiotic factors are universal determinants of ant assemblage structure, but that competitive interactions may not be.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fruit flies that belong to the genus Bactrocera (Diptera: Tephritidae) are major invasive pests of agricultural crops in Asia and Australia. Increased transboundary movement of agricultural produce has resulted in the chance introduction of many invasive species that include Bactrocera mainly as immature stages. Therefore quick and accurate species diagnosis is important at the port of entry, where morphological identification has a limited role, as it requires the presence of adult specimens and the availability of a specialist. Unfortunately when only immature stages are present, a lacunae in their taxonomy impedes accurate species diagnosis. At this juncture, molecular species diagnostics based on COX-I have become handy, because diagnosis is not limited by developmental stages. Yet another method of quick and accurate species diagnosis for Bactrocera spp. is based on the development of species-specific markers. This study evaluated the utility of COX-I for the quick and accurate species diagnosis of eggs, larvae, pupae and adults of B. zonata Saunders, B. tau Walker, and B. dorsalis Hendel. Furthermore the utility of species-specific markers in differentiating B. zonata (500bp) and B. tau (220bp) was shown. Phylogenetic relationships among five subgenera, viz., Austrodacus, Bactrocera, Daculus, Notodacus and Zeugodacus have been resolved employing the 5' region of COX-I (1490-2198); where COX-I sequences for B. dorsalis Hendel, B. tau Walker, B. correcta Bezzi and B. zonata Saunders from India were compared with other NCBI-GenBank accessions. Phylogenetic analysis employing Maximum Parsimony (MP) and Bayesian phylogenetic approach (BP) showed that the subgenus Bactrocera is monophyletic.