517 resultados para EOS PEEK HP3
Resumo:
Geological fluids are important components in the earth system. To study thephysical chemistry properties and the evolution of fluid system turns out to be one of the most challenging issues in geosciences. Besides the conventional experimental approaches and theoretical or semi-theoretical modeling, molecular level computer simulation(MLCS) emerges as an alternative tool to quantificationally study the physico-chemical properties of fluid under extreme conditions in order to find out the characteristics and interaction of geological fluids in and around earth. Based on our previous study of the intermolecular potential for pure H2O and thestrict evaluation of the competitive potential models for pure CH4 and the ab initio fitting potential surface across H2O-CH4 molecules in this study, we carried out more than two thousand molecular dynamics simulations for the PVTx properties of pure CH4 and the H2O-CH4 mixtures. Comparison of 1941 simulations with experimental PVT data for pure CH4 shows an average deviation of 0.96% and a maximum deviation of 2.82%. The comparison of the results of 519 simulations of the mixtures with the experimental measurements reveals that the PVTx properties of the H2O-CH4 mixtures generally agree with the extensive experimental data with an average deviation of 0.83% and 4% in maximum, which is equivalent to the experimental uncertainty. Moreover, the maximum deviation between the experimental data and the simulation results decreases to about 2% as temperature and pressure increase,indicating that the high accuracy of the simulation is well retained in the high temperature and pressure region. After the validation of the simulation method and the intermolecular potential models, we systematically simulated the PVTx properties of this binary system from 673 K and 0.05 GPa to 2573 K and 10 GPa. In order to integrate all the simulation results and the experimental data for the calculation of thermodynamic properties, an equation of state (EOS) is developed for the H2O-CH4 system covering 673 to 2573 K and 0.01 to 10 GPa. Isochores for compositions < 4 mol% CH4 up to 773 K and 600 MPa are also determined in this thesis.
Resumo:
By first principle methods based on density functional theory (DFT),the equation of state(EOS) and elastic constants of both periclase and ferropericlase are calculated. The pressure and iron doping effects on the elastic constants of ferropericlase are investigated systematically. Firstly, we calculate the elastic constants of periclase and compare the obtained results with experimental data and other theoretical calculations, which shows a encouraging consistence and demonstrates the practicability of first-principle methods. Secondly, by adding iron into periclase crystal model, we build up ferropericlase with iron contents ranging from 0% to 25% mole percent. The corresponding elastic constants are calculated in a large pressure range(0~120GPa). Emphatically, the strong correlation of 3d electrons in transitional elements, such as iron, is difficult to treat in first-principle methods for a long time. The current solution is to make additional correction. During the initial stage of this study, the strong correlation of 3d electrons in iron is not considered, and we observed that addition of iron decreases the volume of ferropericlase, which is totally contradictory to the experimental data. By applying LDA+U approximation in order to solve the strongly correlated 3d electron of iron, we observed the expansion of volume by iron as expected. On the basis of the LDA+U approximation, the elastic constants of ferropericlase are calculated. After a detailed analysis of data obtained from theoretical calculations, we have reached the following conclusions:(1)pressure imposes positive effects on all elastic constants, and the degree of effects is C11>C12>C44. (2) Iron has no distinctive effects on C11 and C12, although some fluctuations are observed around 60GPa. However, iron has obvious softening effects on C44 The softening effects on C44 are intensified as pressure increases. Above the 100GPa, the effects increase greatly, even surpasses the pressure's positive effects in ferropericlase crystal models with iron mole percent of having 12.5%, 18.75% and 25% iron content. (3)As to the modulus deprived from elastic constants, iron has no effect on the adiabatic bulk module BS, only a little fluctuation around 60GPa. We find iron's softening effects on shear modulus G. (4)We find out that, compared with low iron content, elastic constants with iron content approaching 25mole% is consistently fluctuated,which may be caused by the limitations of the LDA+U approximation method itself. (5)We investigate the pressure and Fe doping effects on elastic anisotropy factor(A=(2C44+C12-C11)/C11) of ferropericlase and find out that iron contents will lower the critical isotropic pressure. At the same pressure, when the pressure is below the isotropic pressure, iron softens the anisotropy factor ; when pressure surpasses the isotropic pressure, iron increases the anisotropy factor.
Resumo:
(1)H NMR spectroscopy is used to investigate a series of microporous activated carbons derived from a poly(ether ether ketone) (PEEK) precursor with varying amounts of burnoff (BO). In particular, properties relevant to hydrogen storage are evaluated such as pore structure, average pore size, uptake, and binding energy. High-pressure NMR with in situ H(2) loading is employed with H(2) pressure ranging from 100 Pa to 10 MPa. An N(2)-cooled cryostat allows for NMR isotherm measurements at both room temperature ( approximately 290 K) and 100 K. Two distinct (1)H NMR peaks appear in the spectra which represent the gaseous H(2) in intergranular pores and the H(2) residing in micropores. The chemical shift of the micropore peak is observed to evolve with changing pressure, the magnitude of this effect being correlated to the amount of BO and therefore the structure. This is attributed to the different pressure dependence of the amount of adsorbed and non-adsorbed molecules within micropores, which experience significantly different chemical shifts due to the strong distance dependence of the ring current effect. In pores with a critical diameter of 1.2 nm or less, no pressure dependence is observed because they are not wide enough to host non-adsorbed molecules; this is the case for samples with less than 35% BO. The largest estimated pore size that can contribute to the micropore peak is estimated to be around 2.4 nm. The total H(2) uptake associated with pores of this size or smaller is evaluated via a calibration of the isotherms, with the highest amount being observed at 59% BO. Two binding energies are present in the micropores, with the lower, more dominant one being on the order of 5 kJ mol(-1) and the higher one ranging from 7 to 9 kJ mol(-1).
Resumo:
Much of science progresses within the tight boundaries of what is often seen as a "black box". Though familiar to funding agencies, researchers and the academic journals they publish in, it is an entity that outsiders rarely get to peek into. Crowdfunding is a novel means that allows the public to participate in, as well as to support and witness advancements in science. Here we describe our recent crowdfunding efforts to sequence the Azolla genome, a little fern with massive green potential. Crowdfunding is a worthy platform not only for obtaining seed money for exploratory research, but also for engaging directly with the general public as a rewarding form of outreach.
Resumo:
info:eu-repo/semantics/published
Resumo:
info:eu-repo/semantics/published
Resumo:
A process of social transformation allied with ongoing changes to the family has made possible the existence of a relatively little-known phenomenon: that of child-parent violence, which is raised as one of the most commonly experienced forms of violence in the family environment. Based on the study of this phenomenon, in our research we have used the qualitative technique of a life story, making use of a field diary in which we have taken notes on our daily work in the therapeutic context, for the purposes of mitigating the effects of such a process. The following research objectives were set: establishing the connection existing between family education style and the use of violence by the minor; and evaluating the extent to which family therapy mitigates the use of violence by the minor. The family education model, together with other dimensions, results in situations of child-parent violence occurring repeatedly, with continuing negative reinforcement from both parties in order to maintain a recurrent cycle of conduct, from which it is difficult to «escape» other than through a process of ongoing psychological therapy.
Resumo:
The introduction of new degrees in the Faculty of Education and the relevance of educational guidance comes to them, as a compulsory subject in all four grades started from 2009-2010, gives the opportunity to return and boost the University Guidance Service (UGS) as a means of consistency with the profile of their education and professional development of its students. The aim of the paper focuses on the evaluation of the results after the first year of implementing a peer mentoring project, SOU-estuTUtor Project, developed from UGS with all degree students of the Faculty of Education for Students new entrants. Program has been evaluated through the perception and satisfaction of the mentors on the organization, training, skills developed and adapted to the needs of students. After one academic year of implementation, the results show, on the one hand, the satisfaction and commitment of those involved and the partial response to the needs of the students served, as well as the optimization of the personal resources of the university but also some limitations that make it necessary to review the mentoring program in terms of control and duration of the process.
Resumo:
Taking into account the huge repercussion and influence that J.J. Rousseau has had on modern pedagogy, the recent tercentenary of his birth is a good opportunity to think about his outstanding relevance nowadays. This paper is a theoretical and educative research developed with an analytic and comparative hermeneutical method. The main objective is to show how some concepts of his philosophy of education have a great similarity with certain changes that the present competency based teaching is demanding, so it could be considered its methodological background. In order to achieve this objective this exposure has been divided in three parts. The first part is an analysis of Rousseau's educational theory as developed in the first three books of the Emilio, in which one of the main themes is self experience-based learning, fostering self-sufficiency, curiosity and the motivation for learning. Rousseau proposed as a method the negative education, which requires, among other conditions, a constant monitoring of the learner by the tutor. In the second part, a brief summary of the most relevant changes and characteristics of competency-based teaching is developed, as well as its purpose. The student’s participation and activity are highlighted within their own learning process through the carrying out of tasks. The new educational model involves a radical change in the curriculum, in which it is highlighted the transformation of the methodology used in the classroom as well as the role of the teacher. Finally, the aim of the third part is to offer a comparative synthesis of both proposals grouping the parallelisms found in 4 topics: origin of the two models, its aims, methodology, and change in the teaching roles.
Resumo:
Context Extracorporeal membrane oxygenation (ECMO) can support gas exchange in patients with severe acute respiratory distress syndrome (ARDS), but its role has remained controversial. ECMO was used to treat patients with ARDS during the 2009 influenza A(H1N1) pandemic.
Resumo:
In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling (TVγ)−1 combined with the equation of state (EOS). The exponent γσ determined from the Avramov model analysis is compared with the coefficient obtained from the viscosity studies carried out at moderate temperatures. Therefore, the experimental results presented herein provide the answer to the long-standing question regarding the validity of thermodynamic scaling of ionic liquids over a wide temperature range, i.e. from the normal liquid state to the glass transition point. Finally, we investigate the relationship between the dynamic and thermodynamic properties of [C4mim][NTf2] represented by scaling exponent γ and Grüneisen constant γG, respectively.