949 resultados para Degenerate Hopf bifurcation
Resumo:
We consider a finite element approximation of the sixth order nonlinear degenerate parabolic equation ut = ?.( b(u)? 2u), where generically b(u) := |u|? for any given ? ? (0,?). In addition to showing well-posedness of our approximation, we prove convergence in space dimensions d ? 3. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. Finally some numerical experiments in one and two space dimensions are presented.
Resumo:
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of small amplitude even in the presence of stagnation points in the flow.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.
Resumo:
We analyze the large time behavior of a stochastic model for the lay down of fibers on a moving conveyor belt in the production process of nonwovens. It is shown that under weak conditions this degenerate diffusion process has a unique invariant distribution and is even geometrically ergodic. This generalizes results from previous works [M. Grothaus and A. Klar, SIAM J. Math. Anal., 40 (2008), pp. 968–983; J. Dolbeault et al., arXiv:1201.2156] concerning the case of a stationary conveyor belt, in which the situation of a moving conveyor belt has been left open.
Resumo:
For a Lévy process ξ=(ξt)t≥0 drifting to −∞, we define the so-called exponential functional as follows: Formula Under mild conditions on ξ, we show that the following factorization of exponential functionals: Formula holds, where × stands for the product of independent random variables, H− is the descending ladder height process of ξ and Y is a spectrally positive Lévy process with a negative mean constructed from its ascending ladder height process. As a by-product, we generate an integral or power series representation for the law of Iξ for a large class of Lévy processes with two-sided jumps and also derive some new distributional properties. The proof of our main result relies on a fine Markovian study of a class of generalized Ornstein–Uhlenbeck processes, which is itself of independent interest. We use and refine an alternative approach of studying the stationary measure of a Markov process which avoids some technicalities and difficulties that appear in the classical method of employing the generator of the dual Markov process.
Resumo:
This article offers a fresh examination of the distinction drawn in international humanitarian law (IHL) between international and non-international armed conflicts. In particular, it considers this issue from the under-explored perspective of the influence of international human rights law (IHRL). It is demonstrated how, over time, the effect of IHRL on this distinction in IHL has changed dramatically. Whereas traditionally IHRL encouraged the partial elimination of the distinction between types of armed conflict, more recently it has been invoked in debates in a manner that would preserve what remains of the distinction. By exploring this important issue, it is hoped that the present article will contribute to the ongoing debates regarding the future development of the law of non-international armed conflict.
Resumo:
We develop a transaction cost economics theory of the family firm, building upon the concepts of family-based asset specificity, bounded rationality, and bounded reliability. We argue that the prosperity and survival of family firms depend on the absence of a dysfunctional bifurcation bias. The bifurcation bias is an expression of bounded reliability, reflected in the de facto asymmetric treatment of family vs. nonfamily assets (especially human assets). We propose that absence of bifurcation bias is critical to fostering reliability in family business functioning. Our study ends the unproductive divide between the agency and stewardship perspectives of the family firm, which offer conflicting accounts of this firm type's functioning. We show that the predictions of the agency and stewardship perspectives can be usefully reconciled when focusing on how family firms address the bifurcation bias or fail to do so.
Resumo:
We give a comprehensive analysis of the Euler-Jacobi problem of motion in the field of two fixed centers with arbitrary relative strength and for positive values of the energy. These systems represent nontrivial examples of integrable dynamics and are analysed from the point of view of the energy-momentum mapping from the phase space to the space of the integration constants. In this setting, we describe the structure of the scattering trajectories in phase space and derive an explicit description of the bifurcation diagram, i.e., the set of critical value of the energy-momentum map.
Resumo:
The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved
Resumo:
We show a scenario of a two-frequeney torus breakdown, in which a global bifurcation occurs due to the collision of a quasi-periodic torus T(2) with saddle points, creating a heteroclinic saddle connection. We analyze the geometry of this torus-saddle collision by showing the local dynamics and the invariant manifolds (global dynamics) of the saddle points. Moreover, we present detailed evidences of a heteroclinic saddle-focus orbit responsible for the type-if intermittency induced by this global bifurcation. We also characterize this transition to chaos by measuring the Lyapunov exponents and the scaling laws. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work we investigate the degenerate two-photon absorption spectrum of all-trans retinal ill ethanol employing the Z-scan technique with femtosecond pulses, The two-photon absorption (2PA) spectrum presents a monotonous increase as the excitation wavelength approaches the one-photon absorption band and it peak at 790 nm. We attribute the 2PA hand to the mixing of states (1)B(u)+-like and vertical bar S(1)>, which are strongly allowed by one- and two-photon, respectively. We modeled the 2PA spectrum by using the sum-over-states approach and obtained spectroscopic parameters of the electronic transitions to vertical bar S >, vertical bar S(2)> (""(1)Bu(+)""), vertical bar S(3)>, and vertical bar S(4)> singlet-excited states. The results were compared with theoretical predictions of one- and two-photon transition calculations using the response Functions formalism within the density functional theory framework with the aid of the CAM-B3LYP functional.
Resumo:
In this paper we study and present a complete classification of spacelike surfaces with degenerate Gauss map in the Lorentz-Minkowski space L(4).