936 resultados para Deformable templates
Resumo:
In this paper, we present a new algorithm for boosting visual template recall performance through a process of visual expectation. Visual expectation dynamically modifies the recognition thresholds of learnt visual templates based on recently matched templates, improving the recall of sequences of familiar places while keeping precision high, without any feedback from a mapping backend. We demonstrate the performance benefits of visual expectation using two 17 kilometer datasets gathered in an outdoor environment at two times separated by three weeks. The visual expectation algorithm provides up to a 100% improvement in recall. We also combine the visual expectation algorithm with the RatSLAM SLAM system and show how the algorithm enables successful mapping
Resumo:
Most approaches to business process compliance are restricted to the analysis of the structure of processes. It has been argued that full regulatory compliance requires information on not only the structure of processes but also on what the tasks in a process do. To this end Governatori and Sadiq[2007] proposed to extend business processes with semantic annotations. We propose a methodology to automatically extract one kind of such annotations; in particular the annotations related to the data schema and templates linked to the various tasks in a business process.
Resumo:
With the emergence of Unmanned Aircraft Systems (UAS) there is a growing need for safety standards and regulatory frameworks to manage the risks associated with their operations. The primary driver for airworthiness regulations (i.e., those governing the design, manufacture, maintenance and operation of UAS) are the risks presented to people in the regions overflown by the aircraft. Models characterising the nature of these risks are needed to inform the development of airworthiness regulations. The output from these models should include measures of the collective, individual and societal risk. A brief review of these measures is provided. Based on the review, it was determined that the model of the operation of an UAS over inhabited areas must be capable of describing the distribution of possible impact locations, given a failure at a particular point in the flight plan. Existing models either do not take the impact distribution into consideration, or propose complex and computationally expensive methods for its calculation. A computationally efficient approach for estimating the boundary (and in turn area) of the impact distribution for fixed wing unmanned aircraft is proposed. A series of geometric templates that approximate the impact distributions are derived using an empirical analysis of the results obtained from a 6-Degree of Freedom (6DoF) simulation. The impact distributions can be aggregated to provide impact footprint distributions for a range of generic phases of flight and missions. The maximum impact footprint areas obtained from the geometric template are shown to have a relative error of typically less than 1% compared to the areas calculated using the computationally more expensive 6DoF simulation. Computation times for the geometric models are on the order of one second or less, using a standard desktop computer. Future work includes characterising the distribution of impact locations within the footprint boundaries.
Resumo:
Facial expression is an important channel of human social communication. Facial expression recognition (FER) aims to perceive and understand emotional states of humans based on information in the face. Building robust and high performance FER systems that can work in real-world video is still a challenging task, due to the various unpredictable facial variations and complicated exterior environmental conditions, as well as the difficulty of choosing a suitable type of feature descriptor for extracting discriminative facial information. Facial variations caused by factors such as pose, age, gender, race and occlusion, can exert profound influence on the robustness, while a suitable feature descriptor largely determines the performance. Most present attention on FER has been paid to addressing variations in pose and illumination. No approach has been reported on handling face localization errors and relatively few on overcoming facial occlusions, although the significant impact of these two variations on the performance has been proved and highlighted in many previous studies. Many texture and geometric features have been previously proposed for FER. However, few comparison studies have been conducted to explore the performance differences between different features and examine the performance improvement arisen from fusion of texture and geometry, especially on data with spontaneous emotions. The majority of existing approaches are evaluated on databases with posed or induced facial expressions collected in laboratory environments, whereas little attention has been paid on recognizing naturalistic facial expressions on real-world data. This thesis investigates techniques for building robust and high performance FER systems based on a number of established feature sets. It comprises of contributions towards three main objectives: (1) Robustness to face localization errors and facial occlusions. An approach is proposed to handle face localization errors and facial occlusions using Gabor based templates. Template extraction algorithms are designed to collect a pool of local template features and template matching is then performed to covert these templates into distances, which are robust to localization errors and occlusions. (2) Improvement of performance through feature comparison, selection and fusion. A comparative framework is presented to compare the performance between different features and different feature selection algorithms, and examine the performance improvement arising from fusion of texture and geometry. The framework is evaluated for both discrete and dimensional expression recognition on spontaneous data. (3) Evaluation of performance in the context of real-world applications. A system is selected and applied into discriminating posed versus spontaneous expressions and recognizing naturalistic facial expressions. A database is collected from real-world recordings and is used to explore feature differences between standard database images and real-world images, as well as between real-world images and real-world video frames. The performance evaluations are based on the JAFFE, CK, Feedtum, NVIE, Semaine and self-collected QUT databases. The results demonstrate high robustness of the proposed approach to the simulated localization errors and occlusions. Texture and geometry have different contributions to the performance of discrete and dimensional expression recognition, as well as posed versus spontaneous emotion discrimination. These investigations provide useful insights into enhancing robustness and achieving high performance of FER systems, and putting them into real-world applications.
Resumo:
There are different ways to authenticate humans, which is an essential prerequisite for access control. The authentication process can be subdivided into three categories that rely on something someone i) knows (e.g. password), and/or ii) has (e.g. smart card), and/or iii) is (biometric features). Besides classical attacks on password solutions and the risk that identity-related objects can be stolen, traditional biometric solutions have their own disadvantages such as the requirement of expensive devices, risk of stolen bio-templates etc. Moreover, existing approaches provide the authentication process usually performed only once initially. Non-intrusive and continuous monitoring of user activities emerges as promising solution in hardening authentication process: iii-2) how so. behaves. In recent years various keystroke dynamic behavior-based approaches were published that are able to authenticate humans based on their typing behavior. The majority focuses on so-called static text approaches, where users are requested to type a previously defined text. Relatively few techniques are based on free text approaches that allow a transparent monitoring of user activities and provide continuous verification. Unfortunately only few solutions are deployable in application environments under realistic conditions. Unsolved problems are for instance scalability problems, high response times and error rates. The aim of this work is the development of behavioral-based verification solutions. Our main requirement is to deploy these solutions under realistic conditions within existing environments in order to enable a transparent and free text based continuous verification of active users with low error rates and response times.
Resumo:
Despite reports confirming cell-cycle dependent gene expression and a number of studies describing specific circumstances in which β-actin is also regulated, the mRNA for β-actin remains a widely used housekeeping gene internal control. Utilizing differential reverse transcriptase-polymerase chain reaction (RT-PCR), we report here the dose-dependent inhibition of β-actin by matrigel. This was detected by comparison to the very moderate inhibition of the target gene, membrane type-1 matrix metalloproteinase (MT1-MMP), with results independently confirmed by similar findings on MT1-MMP expression using competitive RT-PCR. Furthermore, RT-PCR of the housekeeping gene 18 Svedberg Units (S) rRNA demonstrated excellent consistency, reproducibility and non-regulation by a matrigel treatment. We conclude that β-actin is highly regulated by matrigel and therefore unsuitable as an internal control in this treatment. Hence, these findings suggest that researchers have a responsibility to ensure that the housekeeping gene of choice is not regulated in their specific application, as such regulation may dramatically affect the accuracy of their results. This study reinforces the necessity for minimally regulated housekeeping genes such as 18S rRNA, and the superiority of competitive templates as internal controls for quantitative applications of RT-PCR.
Resumo:
A novel strategy is reported to produce biodegradable microfiber-scaffolds layered with high densities of microparticles encapsulating a model protein. Direct electrospraying on highly porous melt electrospun scaffolds provides a reproducible scaffold coating throughout the entire architecture. The burst release of protein is significantly reduced due to the immobilization of microparticles on the surface of the scaffold and release mechanisms are dependent on protein-polymer interactions. The composite scaffolds have a positive biological effect in contact with precursor osteoblast cells up to 18 days in culture. The scaffold design achieved with the techniques presented here endorses these new composite scaffolds as promising templates for growth factor delivery.
Resumo:
This project investigated ways in which the learning experience for students in Australian law schools could be enhanced by renewing final year legal curriculum through the design of effective capstone experiences to close the loop on tertiary legal studies and better prepare students for a smooth transition into the world of work and professional practice. Key project outcomes are a set of final year curriculum design principles and a transferable model for an effective final year program – a final year Toolkit comprising a range of templates, models and specific capstone examples for adoption or adaptation by legal educators. The project found that the efficacy of capstone experiences is affected by the curriculum context within which they are offered. For this reason, a number of ‘favourable conditions’, which promote the effectiveness of capstone experiences, have also been identified. The project’s final year principles and Toolkit promote program coherence and integration, should increase student satisfaction and levels of engagement with their experience of legal education and make a valuable contribution to assurance of learning in the new Tertiary Education Quality and Standards Agency (TEQSA) environment. From the point of view of the student experience, the final year principles and models address the current fragmented approach to final year legal curricula design and delivery. The knowledge and research base acquired under the auspices of this project is of both discipline and national importance as the project’s outcomes are transferable and have the potential to significantly influence the quality and coherence of the program experience of final year students in other tertiary disciplines, both within Australia and beyond. Project outcomes and deliverables are available on both the project’s website http://wiki.qut.edu.au/display/capstone/Home and on the Law Capstone Experience Forum website http://www.lawcapstoneexperience.com/. In the course of developing its deliverables, the project found that the design of capstone experiences varies significantly within and across disciplines; different frameworks may be used (for example, a disciplinary or inter-disciplinary focus, or to satisfy professional accreditation requirements), rationales and objectives may differ, and a variety of models utilised (for example, an integrated final year program, a single subject, a suite of subjects, or modules within several subjects). Broadly however, capstone experiences should provide final year students with an opportunity both to look back over their academic learning, in an effort to make sense of what they have accomplished, and to look forward to their professional and personal futures that build on that foundational learning.
Resumo:
Digital Human Models (DHM) have been used for over 25 years. They have evolved from simple drawing templates, which are nowadays still used in architecture, to complex and Computer Aided Engineering (CAE) integrated design and analysis tools for various ergonomic tasks. DHM are most frequently used for applications in product design and production planning, with many successful implementations documented. DHM from other domains, as for example computer user interfaces, artificial intelligence, training and education, or the entertainment industry show that there is also an ongoing development towards a comprehensive understanding and holistic modeling of human behavior. While the development of DHM for the game sector has seen significant progress in recent years, advances of DHM in the area of ergonomics have been comparatively modest. As a consequence, we need to question if current DHM systems are fit for the design of future mobile work systems. So far it appears that DHM in Ergonomics are rather limited to some traditional applications. According to Dul et al. (2012), future characteristics of Human Factors and Ergonomics (HFE) can be assigned to six main trends: (1) global change of work systems, (2) cultural diversity, (3) ageing, (4) information and communication technology (ICT), (5) enhanced competiveness and the need for innovation, and; (6) sustainability and corporate social responsibility. Based on a literature review, we systematically investigate the capabilities of current ergonomic DHM systems versus the ‘Future of Ergonomics’ requirements. It is found that DHMs already provide broad functionality in support of trends (1) and (2), and more limited options in regards to trend (3). Today’s DHM provide access to a broad range of national and international databases for correct differentiation and characterization of anthropometry for global populations. Some DHM explicitly address social and cultural modeling of groups of people. In comparison, the trends of growing importance of ICT (4), the need for innovation (5) and sustainability (6) are addressed primarily from a hardware-oriented and engineering perspective and not reflected in DHM. This reflects a persistent separation between hardware design (engineering) and software design (information technology) in the view of DHM – a disconnection which needs to be urgently overcome in the era of software defined user interfaces and mobile devices. The design of a mobile ICT-device is discussed to exemplify the need for a comprehensive future DHM solution. Designing such mobile devices requires an approach that includes organizational aspects as well as technical and cognitive ergonomics. Multiple interrelationships between the different aspects result in a challenging setting for future DHM. In conclusion, the ‘Future of Ergonomics’ pose particular challenges for DHM in regards to the design of mobile work systems, and moreover mobile information access.
Resumo:
Calcium phosphate ceramic scaffolds have been widely investigated for bone tissue engineering due to their excellent biocompatibility and biodegradation. Unfortunately, they have the shortcoming of low mechanical properties. In order to provide strong, bioactive, and biodegradable scaffolds, a new approach of infiltrating the macro-tube ABS (acrylontrile butadiene styrene) templates with a hydroxyapatite/bioactive glass mixed slurry was developed to fabricate porous Si-doped TCP (tri-calcium phosphate) scaffolds. The porous Si-doped TCP ceramics with a high porosity (~65%) and with interconnected macrotubes (~0.8mm in diameter) and micropores (5-100 m) had a high compressive strength (up to 14.68+0.2MPa), which was comparable to that of a trabecular bone and was much higher than those of pure TCP scaffolds. Additional cell attachment study and MTT cytotoxicity assay proved the bioactivity and biocompatibility of the new scaffolds. Thus a potential bioceramic material and a new approach to make the potential scaffolds were developed for bone tissue engineering.
Resumo:
Globalisation is a concept that templates onto many aspects of the commercial world, and the contact lens field is no exception. The major international companies have worldwide distribution networks and supply lenses of the same product names and replacement frequencies to all nations, with a few minor adjustments for marketing and regulatory reasons. Small and mediumsized companies, often producing more specialist lenses, are also active in markets across the world.
Resumo:
There is a continuous quest for developing electrochromic (EC)transition metal oxides (TMOs) with increased coloration efficiency. As emerging TMOs, Nb2O5 films, even those of ordered anodized nanochannels, have failed to produce the required EC performance for practical applications. This is attributed to limitations presented by its relatively wide bandgap and low capacity for accommodating ions. To overcome such issues, MoO3 was electrodeposited onto Nb2O5 nanochannelled films as homogeneously conformal and stratified α-MoO3 coatings of different thickness. The EC performance of the resultant MoO3 coated Nb2O5 binary system was evaluated. The system exhibited a coloration efficiency of 149.0 cm2 C−1, exceeding that of any previous reports on MoO3 and Nb2O5 individually or their compounds. The enhancement was ascribed to a combination of the reduced effective bandgap of the binary system, the increased intercalation probability from the layered α-MoO3 coating, and a high surface-tovolume ratio, while the Nb2O5 nanochannelled templates provided stability and low impurity pathways for charge transfer to occur.
Resumo:
Over the past decade the mitochondrial (mt) genome has become the most widely used genomic resource available for systematic entomology. While the availability of other types of ‘–omics’ data – in particular transcriptomes – is increasing rapidly, mt genomes are still vastly cheaper to sequence and are far less demanding of high quality templates. Furthermore, almost all other ‘–omics’ approaches also sequence the mt genome, and so it can form a bridge between legacy and contemporary datasets. Mitochondrial genomes have now been sequenced for all insect orders, and in many instances representatives of each major lineage within orders (suborders, series or superfamilies depending on the group). They have also been applied to systematic questions at all taxonomic scales from resolving interordinal relationships (e.g. Cameron et al., 2009; Wan et al., 2012; Wang et al., 2012), through many intraordinal (e.g. Dowton et al., 2009; Timmermans et al., 2010; Zhao et al. 2013a) and family-level studies (e.g. Nelson et al., 2012; Zhao et al., 2013b) to population/biogeographic studies (e.g. Ma et al., 2012). Methodological issues around the use of mt genomes in insect phylogenetic analyses and the empirical results found to date have recently been reviewed by Cameron (2014), yet the technical aspects of sequencing and annotating mt genomes were not covered. Most papers which generate new mt genome report their methods in a simplified form which can be difficult to replicate without specific knowledge of the field. Published studies utilize a sufficiently wide range of approaches, usually without justification for the one chosen, that confusion about commonly used jargon such as ‘long PCR’ and ‘primer walking’ could be a serious barrier to entry. Furthermore, sequenced mt genomes have been annotated (gene locations defined) to wildly varying standards and improving data quality through consistent annotation procedures will benefit all downstream users of these datasets. The aims of this review are therefore to: 1. Describe in detail the various sequencing methods used on insect mt genomes; 2. Explore the strengths/weakness of different approaches; 3. Outline the procedures and software used for insect mt genome annotation, and; 4. Highlight quality control steps used for new annotations, and to improve the re-annotation of previously sequenced mt genomes used in systematic or comparative research.
Resumo:
An effective technique to improve the precision and throughput of energetic ion condensation through dielectric nanoporous templates and reduce nanopore clogging by using finely tuned pulsed bias is proposed. Multiscale numerical simulations of ion deposition show the possibility of controlling the dynamic charge balance on the upper template's surface to minimize ion deposition on nanopore sidewalls and to deposit ions selectively on the substrate surface in contact with the pore opening. In this way, the shapes of nanodots in template-assisted nanoarray fabrication can be effectively controlled. The results are applicable to various processes involving porous dielectric nanomaterials and dense nanoarrays.
Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.