970 resultados para Deep-sea sharks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m**2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of Fe, Mg, Ca, Sr, Mn, Zn, and other heavy metals were analyzed by atomic absorption spectrometry in 27 chert samples from the Pacific deep sea, 17 chert samples from land, and 4 associated sediments from the Pacific Ocean. Among the elements, Fe and Mg concentrations are highly correlatable as are the relationships between Ca and Sr, or between Ca and CO2. The correlation between Fe and Mg is particularly high for Pacific deep-sea flints and cherts, and for cherts of deep-sea origin from outcrops on land. Enrichments in heavy metals were recognized in some deep-sea cherts; volcanogenic cherts are enriched in Fe, a chert nodule containing basaltic fragments is enriched in Zn and Cr, and biogenically enclosed carbonates in flint nodules are enriched in Mn. The correlation of Fe and Mg and their constant ratio [Mg(%)/Fe(%)] of around 0.33 might be characteristic features in the pelagic clays contained in deep-sea flints and cherts, and the concentrations of heavy metals in them would be controlled by the concentrations of Fe-Mg correlated clays. Although the mineralogical nature of the Fe-Mg clay in deep-sea cherts was not clarified by dissolution experiments on opaline minerals in chert, the high concentrations of Fe-montmorillonite and fine-grained olivine or other ferromagnesian silicate minerals in the clay may result in the high correlations between Fe and Mg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the 3He/3He and 3He/20 Ne ratios of thirty-nine pore water and gas samples in deep-sea sediments collected at twelve sites on the Pacific Ocean bottom during the cruises of Deep Sea Drilling Project Legs 87, 89, 90 and 92. The 3He/4He and 4He/20Ne ratios vary from 0.000000215 to 0.00000165 and from 0.29 to 20, respectively. He in the sample is composed of four components: (1) atmospheric He dissolved in seawater; (2) atmospheric He with mantle-derived He in Pacific bottom water; (3) in situ radiogenic He in the sediment; and (4) crustal He in the basement rock. Assuming that the 20Ne contents are constant with the value of seawater, the depth variations in the 4He/20Ne ratios at five Sites, 583D, 594, 597A, 598A and 504B, may provide useful information on 4He flux at the ocean bottom. The estimated 4He fluxes vary from 2000 to 40000 atoms cm**-2 s**-1 and are one to three orders of magnitude less than those calculated from the excess He in deep ocean water. An overall similarity between the geographical distribution of the 3He/4He ratios and heat flow data is found in the study area, between the East Pacific Rise across the Pacific Ocean and the Japanese Islands. The tendency is well explained by a conventional sea-floor spreading model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities associated with tectonic faults where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. During the cruise YK06-05 in 2006 with the RV Yokosuka to the Japan Trench, we investigated a clam colony inhabited by Abyssogena phaseoliformis (former known as Calyptogena phaseoliformis) and Isorropodon fossajaponicum (former known as Calyptogena fossajaponica). The targeted sampling and precise positioning of the in situ instruments were achieved with the manned research submersible Shinkai 6500 (JAMSTEC, Nankoku, Kochi, Japan). Sampling was first performed close to the rim of the JTC colony and then at the center. Immediately after sample recovery onboard, the sediment core was sub-sampled for ex situ rate measurements or preserved for later analyses. In sediment of the clam colony, low sulfate reduction (SR) rates (max. 128 nmol ml**-1 d**-1) were coupled to the anaerobic oxidation of methane (AOM). They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity was low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concretions of manganese have been discovered by the geological expedition to the islands of the Timor group in 1910-1912 in triassic and jurassic deep-sea deposits, on the Island of Timor, and also well developed in similar jurassic deposits on the island of Rotti, and previously, in 1894, the author noticed them in abysmal deposits of the pre-cretaceous probably jurassic Danau formation, occurring in West and East Borneo. On the island of Rotti nodules of manganese were found in several localities in siliceous limestones, marls, siliceous and calcareous clayshales along with concretions and nodules of chert of jurassic age, full of tests of radiolaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laboratory measurements of ultrasonic velocity (VP, VS) and attenuation (QP**-1, QS**-1) in deep-sea carbonate sequences at DSDP Sites 288, 289 and 316 in the equatorial Pacific were made in conjunction with studies of sediment density, porosity and pore geometry in order to investigate the role of diagenesis in the development of physical properties. Bulk porosity decrease appears to be related more significantly to depth of burial than to age of strata. Both depth of burial and age, however, are important factors controlling the modal pore diameter. In deep-burial diagenesis the modification of pore geometry is influenced by the presence of silica during diagenesis. In carbonate sequences at the three DSDP sites studied, shear wave attenuation anisotropy (QSHH**-1/QSHV**-1) correlates with the shear wave velocity anisotropy. Pore orientation, resulting from overburden pressure and other deep-burial diagenetic processes, is an important factor controlling the increase of VP anisotropy with age and depth of burial. On the basis of observed minor changes in anisotropy values with increasing pressure for some samples, other contributions to VP anisotropy such as grain orientation and bedding lamination cannot be ruled out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term evolution is thought to take opportunities that arise as a consequence of mass extinction (as argued, for example, by Gould, 2002) and the following biotic recovery, but there is absolutely no evidence for this being the case. However, our study shows that eutrophication by oceanic mixing also played a part in the enhancement of several evolutionary events amongst marine organisms, and these results could indicate that the rates of oceanic biodiversification may be slowed if upwelling becomes weakened by future global warming. This paper defines three distinct evolutionary events of resting spores of the marine diatom genus Chaetoceros, to reconstruct past upwelling through the analysis of several DSDP, ODP and land-based successions from the North, South and equatorial Pacific as well as the Atlantic Ocean during the past 40 million years. The Atlantic Chaetoceros Explosion (ACE) event occurred across the E/O boundary in the North Atlantic, and is characterized by resting spore diversification that occurred as a consequence of the onset of upwelling following changes in thermohaline circulation through global cooling in the early Oligocene. Pacific Chaetoceros Explosion events-1 and -2 (PACE-1 and PACE-2) are characterized by relatively higher occurrences of iron input following the Himalayan uplift and aridification at 8.5 Ma and ca. 2.5 Ma in the North Pacific region. These events not only enhanced the diversification and increased abundance of primary producers, including that of Chaetoceros, other diatoms and seaweeds, but also stimulated the evolution of zooplankton and larger predators, such as copepods and marine mammals, which ate these phytoplankton and plants. Current thinking suggests new evolutionary niches open up after a mass extinction, but our study finds that eutrophication can also stimulate evolutionary diversification. Moreover, in the opposite fashion, our results show that as thermohaline circulation abates, global warming progresses and the ocean surface becomes warmer, many marine organisms will be affected by the environmental degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paleobathymetric assessments of fossil foraminiferal faunas play a significant role in the analysis of the paleogeographic, sedimentary, and tectonic histories of New Zealand's Neogene marine sedimentary basins. At depths >100 m, these assessments often have large uncertainties. This study, aimed at improving the precision of paleodepth assessments, documents the present-day distribution of deep-sea foraminifera (>63 µm) in 66 samples of seafloor sediment at 90-700 m water depth (outer shelf to mid-abyssal), east of New Zealand. One hundred and thirty-nine of the 465 recorded species of benthic foraminifera are new records for the New Zealand region. Characters of the foraminiferal faunas which appear to provide the most useful information for estimating paleobathymetry are, in decreasing order of reliability: relative abundance of common benthic species; benthic species associations; upper depth limits of key benthic species; and relative abundance of planktic foraminifera. R mode cluster analysis on the quantitative census data of the 58 most abundant species of benthic foraminifera produced six species associations within three higher level clusters: (1) calcareous species most abundant at mid-bathyal to outer shelf depths (<1000 m); (2) calcareous species most abundant at mid-bathyal and greater depths (>600 m); (3) agglutinated species mostly occurring at deep abyssal depths (>3000 m). A detrended correspondence analysis ordination plot exhibits a strong relationship between these species associations and bathymetry. This is manifest in the bathymetric ranges of the relative abundance peaks of many of the common benthic species (e.g., Abditodentrix pseudothalmanni 500-2800 m, Bolivina robusta 200-650 m, Bulimina marginata f. marginata 20-600 m, B. marginata f. aculeata 400-3000 m, Cassidulina norvangi 1000-4500 m, Epistominella exigua 1000-4700 m, and Trifarina angulosa 10-650 m), which should prove useful in paleobathymetric estimates. The upper depth limits of 28 benthic foraminiferal species (e.g., Fursenkoina complanata 200 m, Bulimina truncana 450 m, Melonis affinis 550 m, Eggerella bradyi 750 m, and Cassidulina norvangi 1000 m) have potential to improve the precision of paleobathymetric estimates based initially on the total faunal composition. The planktic percentage of foraminiferal tests increases from outer shelf to upper abyssal depths followed by a rapid decline within the foraminiferal lysocline (below c. 3600 m). A planktic percentage <50% is suggestive of shelf depths, and >50% is suggestive of bathyal or abyssal depths above the CCD. In the abyssal zone there is dramatic taphonomic loss of most agglutinated tests (except some textulariids) at burial depths of 0.1-0.2 m, which negates the potential usefulness of these taxa in paleobathymetric assessments.