953 resultados para DYNAMICAL PARAMETER
Resumo:
This paper discusses the use of probabilistic or randomized algorithms for solving combinatorial optimization problems. Our approach employs non-uniform probability distributions to add a biased random behavior to classical heuristics so a large set of alternative good solutions can be quickly obtained in a natural way and without complex conguration processes. This procedure is especially useful in problems where properties such as non-smoothness or non-convexity lead to a highly irregular solution space, for which the traditional optimization methods, both of exact and approximate nature, may fail to reach their full potential. The results obtained are promising enough to suggest that randomizing classical heuristics is a powerful method that can be successfully applied in a variety of cases.
Resumo:
Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.
The Dynamical Systems Approach to Cognition. Studies of Nonlinear Phenomena in Life Science - Vol 10
Resumo:
The literature related to skew–normal distributions has grown rapidly in recent yearsbut at the moment few applications concern the description of natural phenomena withthis type of probability models, as well as the interpretation of their parameters. Theskew–normal distributions family represents an extension of the normal family to whicha parameter (λ) has been added to regulate the skewness. The development of this theoreticalfield has followed the general tendency in Statistics towards more flexible methodsto represent features of the data, as adequately as possible, and to reduce unrealisticassumptions as the normality that underlies most methods of univariate and multivariateanalysis. In this paper an investigation on the shape of the frequency distribution of thelogratio ln(Cl−/Na+) whose components are related to waters composition for 26 wells,has been performed. Samples have been collected around the active center of Vulcanoisland (Aeolian archipelago, southern Italy) from 1977 up to now at time intervals ofabout six months. Data of the logratio have been tentatively modeled by evaluating theperformance of the skew–normal model for each well. Values of the λ parameter havebeen compared by considering temperature and spatial position of the sampling points.Preliminary results indicate that changes in λ values can be related to the nature ofenvironmental processes affecting the data
Resumo:
PURPOSE: All kinds of blood manipulations aim to increase the total hemoglobin mass (tHb-mass). To establish tHb-mass as an effective screening parameter for detecting blood doping, the knowledge of its normal variation over time is necessary. The aim of the present study, therefore, was to determine the intraindividual variance of tHb-mass in elite athletes during a training year emphasizing off, training, and race seasons at sea level. METHODS: tHb-mass and hemoglobin concentration ([Hb]) were determined in 24 endurance athletes five times during a year and were compared with a control group (n = 6). An analysis of covariance was used to test the effects of training phases, age, gender, competition level, body mass, and training volume. Three error models, based on 1) a total percentage error of measurement, 2) the combination of a typical percentage error (TE) of analytical origin with an absolute SD of biological origin, and 3) between-subject and within-subject variance components as obtained by an analysis of variance, were tested. RESULTS: In addition to the expected influence of performance status, the main results were that the effects of training volume (P = 0.20) and training phases (P = 0.81) on tHb-mass were not significant. We found that within-subject variations mainly have an analytical origin (TE approximately 1.4%) and a very small SD (7.5 g) of biological origin. CONCLUSION: tHb-mass shows very low individual oscillations during a training year (<6%), and these oscillations are below the expected changes in tHb-mass due to Herythropoetin (EPO) application or blood infusion (approximately 10%). The high stability of tHb-mass over a period of 1 year suggests that it should be included in an athlete's biological passport and analyzed by recently developed probabilistic inference techniques that define subject-based reference ranges.
Resumo:
X-ray is a technology that is used for numerous applications in the medical field. The process of X-ray projection gives a 2-dimension (2D) grey-level texture from a 3- dimension (3D) object. Until now no clear demonstration or correlation has positioned the 2D texture analysis as a valid indirect evaluation of the 3D microarchitecture. TBS is a new texture parameter based on the measure of the experimental variogram. TBS evaluates the variation between 2D image grey-levels. The aim of this study was to evaluate existing correlations between 3D bone microarchitecture parameters - evaluated from μCT reconstructions - and the TBS value, calculated on 2D projected images. 30 dried human cadaveric vertebrae were acquired on a micro-scanner (eXplorer Locus, GE) at isotropic resolution of 93 μm. 3D vertebral body models were used. The following 3D microarchitecture parameters were used: Bone volume fraction (BV/TV), Trabecular thickness (TbTh), trabecular space (TbSp), trabecular number (TbN) and connectivity density (ConnD). 3D/2D projections has been done by taking into account the Beer-Lambert Law at X-ray energy of 50, 100, 150 KeV. TBS was assessed on 2D projected images. Correlations between TBS and the 3D microarchitecture parameters were evaluated using a linear regression analysis. Paired T-test is used to assess the X-ray energy effects on TBS. Multiple linear regressions (backward) were used to evaluate relationships between TBS and 3D microarchitecture parameters using a bootstrap process. BV/TV of the sample ranged from 18.5 to 37.6% with an average value at 28.8%. Correlations' analysis showedthat TBSwere strongly correlatedwith ConnD(0.856≤r≤0.862; p<0.001),with TbN (0.805≤r≤0.810; p<0.001) and negatively with TbSp (−0.714≤r≤−0.726; p<0.001), regardless X-ray energy. Results show that lower TBS values are related to "degraded" microarchitecture, with low ConnD, low TbN and a high TbSp. The opposite is also true. X-ray energy has no effect onTBS neither on the correlations betweenTBS and the 3Dmicroarchitecture parameters. In this study, we demonstrated that TBS was significantly correlated with 3D microarchitecture parameters ConnD and TbN, and negatively with TbSp, no matter what X-ray energy has been used. This article is part of a Special Issue entitled ECTS 2011. Disclosure of interest: None declared.
Resumo:
PROPÒSIT: Estudiar l'efecte de la cirurgia LASIK en la llum dispersa i la sensibilitat al contrast. MÈTODES: Vint-i-vuit pacients van ser tractats amb LASIK. La qualitat visual es va avaluar abans de l'operació i dos mesos després. RESULTATS: La mitjana de llum dispersa i la sensibilitat al contrast abans de l'operació no va canviar en dos mesos després. Només un ull tenia un marcat augment en la llum dispersa. Nou ulls van presentar una lleugera disminució en la sensibilitat al contrast. S'han trobat dues complicacions. CONCLUSIÓ: Després de LASIK la majoria dels pacients (80%) no van tenir complicacions i van mantenir la seva qualitat visual. Uns pocs pacients (16%) van tenir una mica de qualitat visual disminuïda. Molt pocs (4%) van tenir complicacions clíniques amb disminució en la qualitat visual.
Resumo:
The speed of front propagation in fractals is studied by using (i) the reduction of the reaction-transport equation into a Hamilton-Jacobi equation and (ii) the local-equilibrium approach. Different equations proposed for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and what is the exact form of this acceleration
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems