999 resultados para DIPOLE MODE
Resumo:
Continuous common mode feedback (CMFB) circuits having high input impedance and low distortion are proposed. The proposed circuits are characterized for 0.18 mu m CMOS process with 1.8 V supply. Simulation results indicate that the proposed common mode detector consumes no standby power and CMFB circuit consumes 27-34% less power than previous high swing CMFB circuits.
Resumo:
The formal charge distributions in and the dipole moments of some organophosphines and arsines have been calculated, and the dipole moments of (p-chlorophenyl)dichlorophosphine (2.28 D) and (p-bromophenyl)dichlorophosphine (2.04 D) have been determined in benzene at 35° C. The differences between the observed and the calculated moments are explained in terms of dπ---pπ back-bonding and hyperconjugative effects in alkylhaloarsines. The mesomeric effects operating in the aromatic systems are evaluated by comparing the moments with those for the corresponding aliphatic systems. In unsaturated compounds the differences are attributed to mesomeric effects involving the expansion of arsenic valence shell.
Resumo:
We extend current research in the area of 'sensorless' control of induction motors by presenting two observers based on first- and second-order sliding mode control theories for the simultaneous estimation of flux and speed. We base the observers on the stator-flux model of the motor instead of the usual rotor-flux model mainly because of the uncertain rotor resistance that plays a significant role in the latter. By designing the observers as if they are sliding mode controllers, we lend the properties of parameter insensitive closed-loop dynamics and finite time convergence to the stator flux and speed estimation schemes. We also present simulation and experimental results to validate the operation of the observers.
Resumo:
The evolution of microstructure and texture during deformation of two-phase (alpha + beta) brass was studied for different initial microstructure and texture. The deformation processing involved unidirectional and multi-step cross-rolling. The bulk textures were determined by measuring the pole figures and calculating the orientation distribution function ODF for both alpha (fcc) and beta (bcc) phases, while the microstructure and other microstructural parameters were measured through optical microscopy and scanning electron microscopy with electron back scatter diffraction (SEM-EBSD). Results indicate that textures developed after unidirectional rolling and multi-step cross-rolling are significantly different. The variation in initial texture had a pronounced effect on the development of texture in the alpha phase during subsequent deformation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A multilevel inverter with 12-sided polygonal voltage space vector structure is proposed in this paper. The present scheme provides elimination of common mode voltage variation and 5(th) and 7(th) order harmonics in the entire operating range of the drive. The proposed multi level structure is achieved by cascading only the conventional two-level inverters with asymmetrical DC link voltages. The bandwidths problems associated with conventional hexagonal voltage space vector structure current controllers, due to the presence of 5(th) and 7(th) harmonics, in the over modulation region, is absent in the present 12-sided structure. So a linear voltage control up to 12-step operation is possible, from the present twelve sided scheme, with less current control complexity. An open-end winding structure is used for the induction motor drive.
Resumo:
A modern system theory based nonlinear control design is discussed in this paper for successful operation of an air-breathing engine operating at supersonic speed. The primary objective of the control design of such an air-breathing engine is to ensure that the engine dynamically produces the thrust that tracks a commanded value of thrust as closely as possible by regulating the fuel flow to the combustion system. However, since the engine operates in the supersonic range, an important secondary objective is to manage the shock wave configuration in the intake section of the engine which is manipulated by varying the throat area of the nozzle. A nonlinear sliding mode control technique has been successfully used to achieve both of the above objectives. In this problem, since the process is faster than the actuators, independent control designs are also carried out for the actuators as well to assure the satisfactory performance of the system. Moreover, to filter out the sensor and process noises and to estimate the states for making the control design operate based on output feedback, an Extended Kalman Filter based state estimation design is also carried out. The promising simulation results suggest that the proposed control design approach is quite successful in obtaining robust performance of the air-breathing engine.
Resumo:
Ultrafast Raman loss spectroscopy (URLS) enables one to obtain the vibrational structural information of molecular systems including fluorescent materials. URLS, a nonlinear process analog to stimulated Raman gain, involves a narrow bandwidth picosecond Raman pump pulse anda femtosecond broadband white light continuum. Under nonresonant condition, the Raman response appears as a negative (loss) signal, whereas, on resonance with the electronic transition the line shape changes from a negative to a positive through a dispersive form. The intensities observed and thus, the Franck-Condon activity (coordinate dependent), are sensitive to the wavelength of the white light corresponding to a particular Raman frequency with respect to the Raman pump pulse wavelength, i.e., there is a mode-dependent response in URLS. (C) 2010 American Institute of Physics.
Resumo:
Results of photoelastic investigations conducted on cylindrical tubes (made of Araldite material) containing cracks oriented at 0°, 30°, 45°, 60° and 90° to the axis of the tube and subjected to axial and torsional loads are reported. The stress-intensity factors (SIFs) were determined by analysing the crack-tip stress fields. Smith and Smith's method [Engng Fracture Mech.4, 357–366 (1972)] and a new method developed by the authors by modifying Rakesh et al.'s method [Proc. 26th Congress of ISTAM, India (1981)] were employed to evaluate the mixed-mode SIFs.
Resumo:
Theoretical expressions for the time-dependent solvation energy of an ion and of a dipole in a dense dipolar liquid are derived from microscopic considerations. We show that in contradiction to the prediction of the continuum models, the dynamics of these two species are significantly different from each other. Especially, the zero wavevector contribution, which is significant for ions, is totally absent for dipoles. Dipolar solvation may be profoundly influenced by the translational modes of the host solvent.
Resumo:
Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5, unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic free operation is obtained. The results are verified experimentally.
Novel reproductive mode in a torrent frog Micrixalus saxicola (Jerdon) from the Western Ghats, India
Resumo:
Reproductive modes in anurans are highly diverse despite external fertilization being a constraint. There are 39 reproductive modes documented so far (Wells, 2007). An apparently new reproductive mode is reported in a torrent frog, Micrixalus saxicola, an endemic and ancient anuran frog of the Western Ghats, considering the type of cavity made inside the lotic water body, involvement of the female in digging the cavity and concealing the eggs.