921 resultados para Cytotoxic Metabolites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Klebsiella pneumoniae is a capsulated Gram negative bacterial pathogen and a frequent cause of nosocomial infections. Despite its clinical relevance, little is known about the features of the interaction between K. pneumoniae and lung epithelial cells on a cellular level, neither about the role of capsule polysaccharide, one of its best characterised virulence factors, in this interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biotransformation of acridine, dictamnine and 4-chlorofuro[2,3-b]quinolone, using whole cells of Sphingomonas yanoikuyae B8/36, yielded five enantiopure cyclic cis-dihydrodiols, from biphenyl dioxygenase-catalysed dihydroxylation of the carbocyclic rings. cis-Dihydroxylation of the furan ring in dictamnine and 4-chlorofuro[2,3-b] quinoline, followed by ring opening and reduction, yielded two exocyclic diols. The structures and absolute configurations of metabolites have been determined by spectroscopy and stereochemical correlation methods. Enantiopure arene oxide metabolites of acridine and dictamnine have been synthesised, from the corresponding cis-dihydrodiols. The achiral furoquinoline alkaloids robustine, gamma-fagarine, haplopine, isohaplopine-3,3'-dimethylallylether and pteleine have been obtained, from either cis-dihydrodiol, catechol or arene oxide metabolites of dictamnine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are contaminants which have been shown to regularly co-occur in a range of foods. However, only a small number of studies have evaluated the interactive effect of binary and tertiary mycotoxins. The present study evaluated the effects of low levels of each mycotoxin in combination at their EU regulatory limits. Toxic effect with respect to cell viability was measured by MTT and neutral red assays, assessing mitochondria and lysosome integrities respectively. Individual toxicity showed that OTA (10 μg/ml) was the most cytotoxic mycotoxin in all three cell lines studied (caco-2, MDBK and raw 264.7). Binary combinations were cytotoxic to the MDBK cell line in the order [OTA/FB1] > [AFB1/FB1] > [AFB1/OTA], whilst all effects observed were classified as being additive. Tertiary combinations of AFB1, FB1 and OTA at the EU regulatory limits were tested and not found to exhibit measurable cytotoxicity in MDBK, caco-2 or raw 264.7 cells. However by increasing these concentrations above the legal limits to OTA (3 μg/ml), FB1 (8 μg/ml) and AFB1 (1.28 μg/ml), cytotoxicity was observed with up to 26% reduction in cell viability and synergistic effects were evident with regard to mitochondrial integrity. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synopsis
Objectives

To exploit the microbial ecology of bacterial metabolite production and, specifically, to: (i) evaluate the potential use of the pigments prodigiosin and violacein as additives to commercial sunscreens for protection of human skin, and (ii) determine antioxidant and antimicrobial activities (against pathogenic bacteria) for these two pigments.

Methods
Prodigiosin and violacein were used to supplement extracts of Aloe vera leaf and Cucumis sativus (cucumber) fruit which are known to have photoprotective activity, as well as some commercial sunscreen preparations. For each, sunscreen protection factors (SPFs) were determined spectrophotometrically. Assays for antimicrobial activity were carried out using 96-well plates to quantify growth inhibition of Staphylococcus aureus and Escherichia coli.
Results
For the plant extracts, SPFs were increased by an order of magnitude (i.e. up to ~3.5) and those for the commercial sunscreens increased by 10–22% (for 4% w/w violacein) and 20–65% (for 4% w/w prodigiosin). The antioxidant activities of prodigiosin and violacein were approximately 30% and 20% those of ascorbic acid (a well-characterized, potent antioxidant). Violacein inhibited S. aureus (IC506.99 ± 0.146 μM) but not E. coli, whereas prodigiosin was effective against both of these bacteria (IC50 values were 0.68 ± 0.06 μM and 0.53 ± 0.03 μM, respectively).

Conclusion
The bacterial pigments prodigiosin and violacein exhibited antioxidant and antimicrobial activities and were able to increase the SPF of commercial sunscreens as well as the extracts of the two plant species tested. These pigments have potential as ingredients for a new product range of and, indeed, represent a new paradigm for sunscreens that utilize substances of biological origin. We discussed the biotechnological potential of these bacterial metabolites for use in commercial sunscreens, and the need for studies of mammalian cells to determine safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zearalenone (ZEN) is a mycotoxin produced by Fusarium fungi. Once ingested, ZEN may be absorbed andmetabolised to a- and b-zearalenol (a-ZOL, b-ZOL), and to a lesser extent a- and b-zearalanol (a-ZAL,b-ZAL). Further biotransformation to glucuronide conjugates also occurs to facilitate the elimination ofthese toxins from the body. Unlike ZEN and its metabolites, information regarding the estrogenic activityof these glucuronide conjugates in various tissues is lacking. ZEN-14-O-glucuronide, a-ZOL-14-O-glucuronide,a-ZOL-7-O-glucuronide, b-ZOL-14-O-glucuronide and b-ZOL-16-O-glucuronide, previouslyobtained as the major products from preparative enzymatic synthesis, were investigated for their potentialto cause endocrine disruption through interference with estrogen receptor transcriptional activity.All five glucuronide conjugates showed a very weak agonist response in an estrogen responsive reportergene assay (RGA), with activity ranging from 0.0001% to 0.01% of that of 17b-estradiol, and also lessthan that of ZEN, a-ZOL and b-ZOL which have previously shown estrogenic potencies of the order 17bestradiol> a-ZOL > ZEN > b-ZOL. Confirmatory mass spectrometry revealed that any activity observedwas likely a result of minor deconjugation of the glucuronide moiety. This study confirms that formationof ZEN and ZOL glucuronides is a detoxification reaction with regard to estrogenicity, serving as a potentialhost defence mechanism against ZEN-induced estrogenic activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aflatoxin B1 (AFB1), ochratoxin A (OTA) and fumonisin B1 (FB1) are important mycotoxins in terms of
human exposure via food, their toxicity and regulatory limits that exist worldwide. Mixtures of toxins can frequently be present in foods, however due to the complications of determining their combined toxicity,
legal limits of exposure are determined for single compounds, based on long standing toxicological
techniques. High content analysis (HCA) may be a useful tool to determine total toxicity of complex
mixtures of mycotoxins. Endpoints including cell number (CN), nuclear intensity (NI), nuclear area (NA),
plasma membrane permeability (PMP), mitochondrial membrane potential (MMP) and mitochondrial
mass (MM) were compared to the conventional 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium
bromide (MTT) and neutral red (NR) endpoints in MDBK cells. Individual concentrations of each
mycotoxin (OTA 3mg/ml, FB1 8mg/ml and AFB11.28mg/ml) revealed no cytotoxicity with MTTor NR but
HCA showed significant cytotoxic effects up to 41.6% (p0.001) and 10.1% (p0.05) for OTA and AFB1,
respectively. The tertiary mixture (OTA 3mg/ml, FB1 8mg/ml and AFB1 1.28mg/ml) detected up to 37.3%
and 49.8% more cytotoxicity using HCA over MTT and NR, respectively. Whilst binary combinations of
OTA (3mg/ml) and FB1 (8mg/ml) revealed synergistic interactions using HCA (MMP, MM, NI endpoints)
not detected using MTT or NR. HCA is a highly novel and sensitive tool that could substantially help
determine future regulatory limits, for single and combined toxins present in food, ensuring legislation is based on true risks to human health exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence that some of the fungal metabolites present in food and feed may act as potential endocrine disruptors is increasing. Enniatin B (ENN B) is among the emerging Fusarium mycotoxins known to contaminate cereals. In this study, the H295R and neonatal porcine Leydig cell (LC) models, and reporter gene assays (RGAs) have been used to investigate the endocrine disrupting activity of ENN B. Aspects of cell viability, cell cycle distribution, hormone production as well as the expression of key steroidogenic genes were assessed using the H295R cell model. Cell viability and hormone production levels were determined in the LC model, while cell viability and steroid hormone nuclear receptor transcriptional activity were measured using the RGAs. ENN B (0.01–100 μM) was cytotoxic in the H295R and LC models used; following 48 h incubation with 100 μM. Flow cytometry analysis showed that ENN B exposure (0.1–25 μM) led to an increased proportion of cells in the S phase at higher ENN B doses (>10 μM) while cells at G0/G1 phase were reduced. At the receptor level, ENN B (0.00156–15.6 μM) did not appear to induce any specific (ant) agonistic responses in reporter gene assays (RGAs), however cell viability was affected at 15.6 μM. Measurement of hormone levels in H295R cells revealed that the production of progesterone, testosterone and cortisol in exposed cells were reduced, but the level of estradiol was not significantly affected. There was a general reduction of estradiol and testosterone levels in exposed LC. Only the highest dose (100 μM) used had a significant effect, suggesting the observed inhibitory effect is more likely associated with the cytotoxic effect observed at this dose. Gene transcription analysis in H295R cells showed that twelve of the sixteen genes were significantly modulated (p < 0.05) by ENN B (10 μM) compared to the control. Genes HMGR, StAR, CYP11A, 3βHSD2 and CYP17 were downregulated, whereas the expression of CYP1A1, NR0B1, MC2R, CYP21, CYP11B1, CYP11B2 and CYP19 were upregulated. The reduction of hormones and modulation of genes at the lower dose (10 μM) in the H295R cells suggests that adrenal endocrine toxicity is an important potential hazard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor photocatalysis has been applied to the remediation of an extensive range of chemical pollutants in water over the past 30 years. The application of this versatile technology for removal of micro-organisms and cyanotoxins has recently become an area that has also been the subject of extensive research particularly over the past decade. This paper considers recent research in the application of semiconductor photocatalysis for the treatment of water contaminated with pathogenic micro-organisms and cyanotoxins. The basic processes involved in photocatalysis are described and examples of recent research into the use of photocatalysis for the removal of a range of microorganisms are detailed. The paper concludes with a review of the key research on the application of this process for the removal of chemical metabolites generated from cyanobacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using toluene dioxygenase as biocatalyst, enantiopure cisdihydrodiol and cis-tetrahydrodiol metabolites, isolated as their ketone tautomers, were obtained from meta and ortho methoxyphenols. Although these isomeric phenol substrates are structurally similar, the major bioproducts from each of these biotransformations were found at different oxidation levels. The relatively stable cyclohexenone cis-diol metabolite from meta methoxyphenol was isolated, while the corresponding metabolite from ortho methoxyphenol was rapidly bioreduced to a cyclohexanone cis-diol. The chemistry of the 3-methoxycyclohexenone cis-diol product was investigated and elimination, aromatization, hydrogenation, regioselective O-exchange, Stork−Danheiser transposition and O-methylation reactions were observed. An offshoot of this technology provided a two-step chemoenzymatic synthesis, from meta methoxyphenol, of a recently reported chiral fungal metabolite; this synthesis also established the previously unassigned absolute configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzylic monooxygenation of benzocycloalkenes, 2-4, by enzymes in intact cultures of Pseudomonas putida UV4 yielded exclusively the [R] enantiomers, 6-8, and the derived ketones 10-12; by contrast, biotransformation of benzocyclobutene, 1, yielded both monooxygenation (5 and 9), dioxygenation (13, 14 and 15), and trioxygenation (16) products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Cigarette smoke induces a pro-inflammatory response in airway epithelial cells but it is not clear which of the various chemicals contained within cigarette smoke (CS) should be regarded as predominantly responsible for these effects. We hypothesised that acrolein, nicotine and acetylaldehyde, important chemicals contained within volatile cigarette smoke in terms of inducing inflammation and causing addiction, have immunomodulatory effects in primary nasal epithelial cell cultures (PNECs).

Methods: PNECs from 19 healthy subjects were grown in submerged cultures and were incubated with acrolein, nicotine or acetylaldehyde prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide (PA LPS). Experiments were repeated using cigarette smoke extract (CSE) for comparison. IL-8 was measured by ELISA, activation of NF-κB by ELISA and Western blotting, and caspase-3 activity by Western blotting. Apoptosis was evaluated using Annexin-V staining and the terminal transferase-mediated dUTP nick end-labeling (TUNEL) method.

Results: CSE was pro-inflammatory after a 24 h exposure and 42% of cells were apoptotic or necrotic after this exposure time. Acrolein was pro-inflammatory for the PNEC cultures (30 μM exposure for 4 h inducing a 2.0 fold increase in IL-8 release) and also increased IL-8 release after stimulation with PA LPS. In contrast, nicotine had anti-inflammatory properties (0.6 fold IL-8 release after 50 μM exposure to nicotine for 24 h), and acetylaldehyde was without effect. Acrolein and nicotine had cellular stimulatory and anti-inflammatory effects respectively, as determined by NF-κB activation. Both chemicals increased levels of cleaved caspase 3 and induced cell death.

Conclusions: Acrolein is pro-inflammatory and nicotine anti-inflammatory in PNEC cultures. CSE induces cell death predominantly by apoptotic mechanisms. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The efficacy of docetaxel has recently been shown to be increased under hypoxic conditions through the down-regulation of hypoxia-inducible-factor 1α (HIF1A). Overexpression of the hypoxia-responsive gene class III β-tubulin (TUBB3) has been associated with docetaxel resistance in a number of cancer models. We propose that administration of docetaxel to prostate patients has the potential to reduce the hypoxic response through HIF1A down-regulation and that TUBB3 down-regulation participates in sensitivity to docetaxel.

METHODS: The cytotoxic effect of docetaxel was determined in both 22Rv1 and DU145 prostate cancer cell lines and correlated with HIF1A expression levels under aerobic and hypoxic conditions. Hypoxia-induced chemoresistance was investigated in a pair of isogenic docetaxel-resistant PC3 cell lines. Basal and hypoxia-induced TUBB3 gene expression levels were determined and correlated with methylation status at the HIF1A binding site.

RESULTS: Prostate cancer cells were sensitive to docetaxel under both aerobic and hypoxic conditions. Hypoxic cytotoxicity of docetaxel was consistent with a reduction in detected HIF1A levels. Sensitivity correlated with reduced basal and hypoxia-induced HIF1A and TUBB3 expression levels. The TUBB3 HIF1A binding site was hypermethylated in prostate cell lines and tumor specimens, which may exclude transcription factor binding and induction of TUBB3 expression. However, acquired docetaxel resistance was not associated with TUBB3 overexpression.

CONCLUSION: These data suggest that the hypoxic nature of a tumor may have relevance as regard to their response to docetaxel. Further investigation into the nature of this relationship may allow identification of novel targets to improve tumor control in prostate cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enantioenriched and enantiopure thiosulfinates were obtained by asymmetric sulfoxidation of cyclic 1,2-disulfides, using chemical and enzymatic (peroxidase, monooxygenase, dioxygenase) oxidation methods and chiral stationary phase HPLC resolution of racemic thiosulfinates. Enantiomeric excess values, absolute configurations and configurational stabilities of chiral thiosulfinates were determined. Methyl phenyl sulfoxide, benzo[c]thiophene cis-4,5-dihydrodiol and 1,3-dihydrobenzo[c]thiophene derivatives were among unexpected types of metabolites isolated, when acyclic and cyclic 1,2-disulfide were used as substrates for Pseudomonas putida strains. Possible biosynthetic pathways are presented for the production of metabolites from 1,4-dihydrobenzo-2,3-dithiane, including a novel cis-dihydrodiol metabolite that was also derived from benzo[c]thiophene and 1,3-dihydrobenzo[c]thiophene.