971 resultados para Cross spectral properties


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Environmental and ecological conditions can shape the evolution of life history traits in many animals. Among such factors, food or nutrition availability can play an important evolutionary role in moderating an animal's life history traits, particularly sexually selected traits. Here, we test whether diet quantity and/or composition in the form of omega-3 long chain polyunsaturated fatty acids (here termed 'n3LC') influence the expression of pre- and postcopulatory traits in the guppy (Poecilia reticulata), a livebearing poeciliid fish. We assigned males haphazardly to one of two experimental diets supplemented with n3LC, and each of these diet treatments was further divided into two diet 'quantity' treatments. Our experimental design therefore explored the main and interacting effects of two factors (n3LC content and diet quantity) on the expression of precopulatory (sexual behaviour and sexual ornamentation, including the size, number and spectral properties of colour spots) and postcopulatory (the velocity, viability, number and length of sperm) sexually selected traits. Our study revealed that diet quantity had significant effects on most of the pre- and postcopulatory traits, while n3LC manipulation had a significant effect on sperm traits and in particular on sperm viability. Our analyses also revealed interacting effects of diet quantity and n3LC levels on courtship displays, and the area of orange and iridescent colour spots in the males' colour patterns. We also confirmed that our dietary manipulations of n3LC resulted in the differential uptake of n3LC in body and testes tissues in the different n3LC groups. This study reveals the effects of diet quantity and n3LC on behavioural, ornamental and ejaculate traits in P. reticulata and underscores the likely role that diet plays in maintaining the high variability in these condition-dependent sexual traits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Applications of LSPR nano-particles in various areas of solar cells, LSPR biosensors, and SERS biosensors, based on interaction of light with noble metal nano-particles is increasing. Therefore, design and nano-fabrication of the LSPR devices is a key step in developing such applications. Design of nano-structures with desirable spectral properties using numerical techniques such as finite difference time domain (FDTD) is the first step in this work. A new structure called nano-sinusoid, satisfying the some desirable LSPR characteristics, is designed and simulated using the FDTD method. In the next stage, analytical method of electro static eigen mode method is used to validate the simulation results. The, nano-fabrications method of electron beam lithography (EBL) is implemented to fabricate the proposed profile with high precision. Finally, atomic force microscopy (AFM) is used to investigate the shape of the fabricated nano-particles, and the dark field microscopy is employed to demonstrate the particular spectral characteristics of the proposed nano-sinusoids.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many empirical studies of the economics of crime focus solely on the determinants thereof, and do not consider the dynamic and cross-sectional properties of their data. As a response to this, the current paper offers an in-depth analysis of this issue using data covering 21 Swedish counties from 1975 to 2010. The results suggest that the crimes considered are non-stationary, and that this cannot be attributed to county-specific disparities alone, but that there are also a small number of common stochastic trends to which groups of counties tend to revert. In an attempt to explain these common stochastic trends, we look for a long-run cointegrated relationship between unemployment and crime. Overall, the results do not support cointegration, and suggest that previous findings of a significant unemployment–crime relationship might be spurious.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Zoologia) - IBRC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Thesis focuses on the X-ray study of the inner regions of Active Galactic Nuclei, in particular on the formation of high velocity winds by the accretion disk itself. Constraining AGN winds physical parameters is of paramount importance both for understanding the physics of the accretion/ejection flow onto supermassive black holes, and for quantifying the amount of feedback between the SMBH and its environment across the cosmic time. The sources selected for the present study are BAL, mini-BAL, and NAL QSOs, known to host high-velocity winds associated to the AGN nuclear regions. Observationally, a three-fold strategy has been adopted: - substantial samples of distant sources have been analyzed through spectral, photometric, and statistical techniques, to gain insights into their mean properties as a population; - a moderately sized sample of bright sources has been studied through detailed X-ray spectral analysis, to give a first flavor of the general spectral properties of these sources, also from a temporally resolved point of view; - the best nearby candidate has been thoroughly studied using the most sophisticated spectral analysis techniques applied to a large dataset with a high S/N ratio, to understand the details of the physics of its accretion/ejection flow. There are three main channels through which this Thesis has been developed: - [Archival Studies]: the XMM-Newton public archival data has been extensively used to analyze both a large sample of distant BAL QSOs, and several individual bright sources, either BAL, mini-BAL, or NAL QSOs. - [New Observational Campaign]: I proposed and was awarded with new X-ray pointings of the mini-BAL QSOs PG 1126-041 and PG 1351+640 during the XMM-Newton AO-7 and AO-8. These produced the biggest X-ray observational campaign ever made on a mini-BAL QSO (PG 1126-041), including the longest exposure so far. Thanks to the exceptional dataset, a whealth of informations have been obtained on both the intrinsic continuum and on the complex reprocessing media that happen to be in the inner regions of this AGN. Furthermore, the temporally resolved X-ray spectral analysis field has been finally opened for mini-BAL QSOs. - [Theoretical Studies]: some issues about the connection between theories and observations of AGN accretion disk winds have been investigated, through theoretical arguments and synthetic absorption line profiles studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorgelegte Dissertation beschäftigt sich mit der Darstellung und Untersuchung von funktionellen Farbstoffen auf der Basis von Rylendiimiden. Diese Substanzklasse zeichnet sich durch gute Funktionalisierbarkeit, hohe chemische und photochemische Stabilität sowie durch hohe Fluoreszenzquantenausbeuten und Extinktionskoeffizienten aus. Rylendiimide spielen eine bedeutsame Rolle in den modernen Materialwissenschaften. Ein Schwerpunkt der Arbeit liegt auf der Synthese und Untersuchung von neuen Perylendiimiden (PDI) im Hinblick auf eine Anwendung in der organischen Elektronik. Das Substitutionsmuster der PDI hat einen signifikanten Einflussrnauf deren supramolekulares Verhalten und die Leistungsfähigkeit in elektronischen Bauteilen. Durch das Einführen neuer Substituenten konnten weitergehende Erkenntnisse über das supramolekulare Verhalten der PDI gewonnenrnwerden. Multichromophore sind wichtige Modellsysteme zur Untersuchung vonrnEnergietransportprozessen und Einzelphotonenquellen. Daher liegt ein weiterer Schwerpunkt auf der Synthese multichromophorer PDI-Systeme. Neben der Darstellung definierter dendritischer Nanoteilchen auf Basis von Poly(phenylenethinylen)-Dendrimeren beschäftigt sich dieser Teil auch mit der Synthese hochverzweigter ethinylverknüpfter Polymere auf Basis von PDI-Monomeren. Aufgrund ihrer außergewöhnlichen photochemischen Eigenschaften spielen Perylen- und Terrylendiimide eine wichtige Rolle als Fluoreszenzmarker.rnDaher beschäftigt sich ein weiterer Aspekt dieser Arbeit mit der Synthese vonrnFluoreszenzmarkern, die sowohl in Polymerisationsreaktionen als auch inrnbiologischen Systemen Anwendung finden können.