988 resultados para Conditional knockout mouse
Resumo:
The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) is a key incretin hormone, released from intestine after a meal, producing a glucose-dependent insulin secretion. The GIP receptor (GIPR) is expressed on pyramidal neurons in the cortex and hippocampus, and GIP is synthesized in a subset of neurons in the brain. However, the role of the GIPR in neuronal signaling is not clear. In this study, we used a mouse strain with GIPR gene deletion (GIPR KO) to elucidate the role of the GIPR in neuronal communication and brain function. Compared with C57BL/6 control mice, GIPR KO mice displayed higher locomotor activity in an open-field task. Impairment of recognition and spatial learning and memory of GIPR KO mice were found in the object recognition task and a spatial water maze task, respectively. In an object location task, no impairment was found. GIPR KO mice also showed impaired synaptic plasticity in paired-pulse facilitation and a block of long-term potentiation in area CA1 of the hippocampus. Moreover, a large decrease in the number of neuronal progenitor cells was found in the dentate gyrus of transgenic mice, although the numbers of young neurons was not changed. Together the results suggest that GIP receptors play an important role in cognition, neurotransmission, and cell proliferation.
Resumo:
The peroxisome proliferator-activated receptor gamma (PPARgamma) mediates the activity of the insulin-sensitizing thiazolidinediones and plays an important role in adipocyte differentiation and fat accretion. The analysis of PPARgamma functions in mature adipocytes is precluded by lethality of PPARgamma(-/-) fetuses and tetraploid-rescued pups. Therefore we have selectively ablated PPARgamma in adipocytes of adult mice by using the tamoxifen-dependent Cre-ER(T2) recombination system. We show that mature PPARgamma-null white and brown adipocytes die within a few days and are replaced by newly formed PPARgamma-positive adipocytes, demonstrating that PPARgamma is essential for the in vivo survival of mature adipocytes, in addition to its well established requirement for their differentiation. Our data suggest that potent PPARgamma antagonists could be used to acutely reduce obesity.
Resumo:
BACKGROUND: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine produced by many tissues including pancreatic beta-cells. METHODS: This study investigates the impact of MIF on islet transplantation using MIF knock-out (MIFko) mice. RESULTS: Early islet function, assessed with a syngeneic marginal islet mass transplant model, was enhanced when using MIFko islets (P<0.05 compared with wild-type [WT] controls). This result was supported by increased in vitro resistance of MIFko islets to apoptosis (terminal deoxynucleotide tranferase-mediated dUTP nick-end labeling assay), and by improved glucose metabolism (lower blood glucose levels, reduced glucose areas under curve and higher insulin release during intraperitoneal glucose challenges, and in vitro in the absence of MIF, P<0.01). The beneficial impact of MIFko islets was insufficient to delay allogeneic islet rejection. However, the rejection of WT islet allografts was marginally delayed in MIFko recipients by 6 days when compared with WT recipient (P<0.05). This effect is supported by the lower activity of MIF-deficient macrophages, assessed in vitro and in vivo by cotransplantation of islet/macrophages. Leukocyte infiltration of the graft and donor-specific lymphocyte activity (mixed lymphocyte reaction, interferon gamma ELISPOT) were similar in both groups. CONCLUSION: These data indicate that targeting MIF has the potential to improve early function after syngeneic islet transplantation, but has only a marginal impact on allogeneic rejection.
Resumo:
ABSTRACT: BACKGROUND: Current tools for analgesia are often only partially successful, thus investigations of new targets for pain therapy stimulate great interest. Consequent to peripheral nerve injury, c-Jun N-terminal kinase (JNK) activity in cells of the dorsal root ganglia (DRGs) and spinal cord is involved in triggering neuropathic pain. However, the relative contribution of distinct JNK isoforms is unclear. Using knockout mice for single isoforms, and blockade of JNK activity by a peptide inhibitor, we have used behavioral tests to analyze the contribution of JNK in the development of neuropathic pain after unilateral sciatic nerve transection. In addition, immunohistochemical labelling for the growth associated protein (GAP)-43 and Calcitonin Gene Related Peptide (CGRP) in DRGs was used to relate injury related compensatory growth to altered sensory function. RESULTS: Peripheral nerve injury produced pain-related behavior on the ipsilateral hindpaw, accompanied by an increase in the percentage of GAP43-immunoreactive (IR) neurons and a decrease in the percentage of CGRP-IR neurons in the lumbar DRGs. The JNK inhibitor, D-JNKI-1, successfully modulated the effects of the sciatic nerve transection. The onset of neuropathic pain was not prevented by the deletion of a single JNK isoform, leading us to conclude that all JNK isoforms collectively contribute to maintain neuropathy. Autotomy behavior, typically induced by sciatic nerve axotomy, was absent in both the JNK1 and JNK3 knockout mice. CONCLUSIONS: JNK signaling plays an important role in regulating pain threshold: the inhibition of all of the JNK isoforms prevents the onset of neuropathic pain, while the deletion of a single splice JNK isoform mitigates established sensory abnormalities. JNK inactivation also has an effect on axonal sprouting following peripheral nerve injury.
Resumo:
Summary : Four distinct olfactory subsystems compose the mouse olfactory system, the main olfactory epithelium (MOE), the septal organ of Masera (SO), the vomeronasal organ (VNO) and the Grueneberg ganglion (GG). They are implicated in the sensory modalities of the animal and they evolved to analyse and discriminate molecules carrying chemical messages, such as odorants and pheromones. In this thesis, the VNO, principally implicated in pheromonal communications as well as the GG, which had no function attributed until this work, were investigated from their morphology to their physiological functions, using an array of biochemical and physiological methods. First, the roles of a particular protein, the CNGA4 ion channel, were investigated in the VNO. In the MOE, CNGA4 is expressed as a modulatory channel subunit implicated in odour discrimination and adaptation. Interestingly, this calcium channel is the unique member of the cyclic nucleotide-gated (CNG) family to be expressed in the VNO and up to this work its functions remained unknown. Using a combination of transgenic and knockout mice, as well as histological and physiological approaches, we have characterized CNGA4 expression in the VNO. A strong expression in immature neurons was found as well as in the microvilli of mature neurons (putative site of chemodetection). Interestingly and confirming its dual localisation, the genetic invalidation of the CNGA4 channel has, as consequences, a strong impairment in vomeronasal maturation as well as deficit in pheromone sensing. Thus the CNGA4 channel appears to be a multifunctional protein in the mouse VNO playing essential role(s) in this organ. During the second part of the work, the morphology of the most recently described olfactory subsystem, the Grueneberg ganglion, was investigated in detail. Interestingly we found that glial cells and ciliated neurons compose this olfactory ganglion. This particular morphological aspect was similar to the olfactory AWC neurons from C. elegans which was used for further comparisons. Thus as for AWC neurons, we found that GG neurons are sensitive to temperature changes and are able to detect highly volatile molecules. Indeed, the presence of alarm pheromones (APs) secreted by stressed mice, elicit strong cellular responses, as well as a GG dependent behavioural changes. Investigations on the signaling elements present in GG neurons revealed that, as for AWC neurons, or pGC-D expressing neurons from the MOE, proteins participating in a cGMP pathway were found in GG neurons such as pGC-G and CNGA3 channels. These two proteins might be implicated in chemosensing as well as in thermosensing, two apparent properties of this organ. In this thesis, the multisensory modalities of two mouse olfactory subsystems were described and are related to a high degree of complexity required for the animal to sense its environment
Resumo:
Until now it was thought that the retrovirus mouse mammary tumor virus preferentially infects B cells, which thereafter proliferate and differentiate due to superantigen-mediated T cell help. We describe in this study that dendritic cells are infectable at levels comparable to B cells in the first days after virus injection. Moreover, IgM knockout mice have chronically deleted superantigen-reactive T cells after MMTV injection, indicating that superantigen presentation by dendritic cells is sufficient for T cell deletion. In both subsets initially only few cells were infected, but there was an exponential increase in numbers of infected B cells due to superantigen-mediated T cell help, explaining that at the peak of the response infection is almost exclusively found in B cells. The level of infection in vivo was below 1 in 1000 dendritic cells or B cells. Infection levels in freshly isolated dendritic cells from spleen, Langerhans cells from skin, or bone marrow-derived dendritic cells were compared in an in vitro infection assay. Immature dendritic cells such as Langerhans cells or bone marrow-derived dendritic cells were infected 10- to 30-fold more efficiently than mature splenic dendritic cells. Bone marrow-derived dendritic cells carrying an endogenous mouse mammary tumor virus superantigen were highly efficient at inducing a superantigen response in vivo. These results highlight the importance of professional APC and efficient T cell priming for the establishment of a persistent infection by mouse mammary tumor virus.
Resumo:
BACKGROUND: Glutathione (GSH) is the major cellular redox-regulator and antioxidant. Redox-imbalance due to genetically impaired GSH synthesis is among the risk factors for schizophrenia. Here we used a mouse model with chronic GSH deficit induced by knockout (KO) of the key GSH-synthesizing enzyme, glutamate-cysteine ligase modulatory subunit (GCLM).¦METHODS: With high-resolution magnetic resonance spectroscopy at 14.1 T, we determined the neurochemical profile of GCLM-KO, heterozygous, and wild-type mice in anterior cortex throughout development in a longitudinal study design.¦RESULTS: Chronic GSH deficit was accompanied by an elevation of glutamine (Gln), glutamate (Glu), Gln/Glu, N-acetylaspartate, myo-Inositol, lactate, and alanine. Changes were predominantly present at prepubertal ages (postnatal days 20 and 30). Treatment with N-acetylcysteine from gestation on normalized most neurochemical alterations to wild-type level.¦CONCLUSIONS: Changes observed in GCLM-KO anterior cortex, notably the increase in Gln, Glu, and Gln/Glu, were similar to those reported in early schizophrenia, emphasizing the link between redox imbalance and the disease and validating the model. The data also highlight the prepubertal period as a sensitive time for redox-related neurochemical changes and demonstrate beneficial effects of early N-acetylcysteine treatment. Moreover, the data demonstrate the translational value of magnetic resonance spectroscopy to study brain disease in preclinical models.
Resumo:
BACKGROUND: In mice, a partial loss of function of the epithelial sodium channel (ENaC), which regulates sodium excretion in the distal nephron, causes pseudohypoaldosteronism, a salt-wasting syndrome. The purpose of the present experiments was to examine how alpha ENaC knockout heterozygous (+/-) mice, which have only one allele of the gene encoding for the alpha subunit of ENaC, control their blood pressure (BP) and sodium balance. METHODS: BP, urinary electrolyte excretion, plasma renin activity, and urinary adosterone were measured in wild-type (+/+) and heterozygous (+/-) mice on a low, regular, or high sodium diet. In addition, the BP response to angiotensin II (Ang II) and to Ang II receptor blockade, and the number and affinity of Ang II subtype 1 (AT1) receptors in renal tissue were analyzed in both mouse strains on the three diets. RESULTS: In comparison with wild-type mice (+/+), alpha ENaC heterozygous mutant mice (+/-) showed an intact capacity to maintain BP and sodium balance when studied on different sodium diets. However, no change in plasma renin activity was found in response to changes in sodium intake in alpha ENaC +/- mice. On a normal salt diet, heterozygous mice had an increased vascular responsiveness to exogenous Ang II (P < 0.01). Moreover, on a normal and low sodium intake, these mice exhibited an increase in the number of AT1 receptors in renal tissues; their BP lowered markedly during the Ang II receptor blockade (P < 0.01) and there was a clear tendency for an increase in urinary aldosterone excretion. CONCLUSIONS: alpha ENaC heterozygous mice have developed an unusual mechanism of compensation leading to an activation of the renin-angiotensin system, that is, the up-regulation of AT1 receptors. This up-regulation may be due to an increase in aldosterone production.
Resumo:
There are numerous studies describing the signaling mechanisms that mediate oligodendrocyte precursor cell (OPC) proliferation and differentiation, although the contribution of the cellular prion protein (PrPc) to this process remains unclear. PrPc is a glycosyl-phosphatidylinositol (GPI)-anchored glycoprotein involved in diverse cellular processes during the development and maturation of the mammalian central nervous system (CNS). Here we describe how PrPc influences oligodendrocyte proliferation in the developing and adult CNS. OPCs that lack PrPc proliferate more vigorously at the expense of a delay in differentiation, which correlates with changes in the expression of oligodendrocyte lineage markers. In addition, numerous NG2-positive cells were observed in cortical regions of adult PrPc knockout mice, although no significant changes in myelination can be seen, probably due to the death of surplus cells.
Resumo:
The second scientific meeting of the European systems genetics network for the study of complex genetic human disease using genetic reference populations (SYSGENET) took place at the Center for Cooperative Research in Biosciences in Bilbao, Spain, December 10-12, 2012. SYSGENET is funded by the European Cooperation in the Field of Scientific and Technological Research (COST) and represents a network of scientists in Europe that use mouse genetic reference populations (GRPs) to identify complex genetic factors influencing disease phenotypes (Schughart, Mamm Genome 21:331-336, 2010). About 50 researchers working in the field of systems genetics attended the meeting, which consisted of 27 oral presentations, a poster session, and a management committee meeting. Participants exchanged results, set up future collaborations, and shared phenotyping and data analysis methodologies. This meeting was particularly instrumental for conveying the current status of the US, Israeli, and Australian Collaborative Cross (CC) mouse GRP. The CC is an open source project initiated nearly a decade ago by members of the Complex Trait Consortium to aid the mapping of multigenetic traits (Threadgill, Mamm Genome 13:175-178, 2002). In addition, representatives of the International Mouse Phenotyping Consortium were invited to exchange ongoing activities between the knockout and complex genetics communities and to discuss and explore potential fields for future interactions.
Resumo:
Mammalian spermatozoa gain their fertilizing ability during maturation in the epididymis. Proteins and lipids secreted into the epididymal lumen remodel the sperm membrane, thereby providing the structure necessary for progressive motility and oocyte interaction. In the current study, genetically modified mouse models were utilized to determine the role of novel genes and regulatory systems in the postnatal development and function of the epididymis. Ablation of the mouse β-defensin, Defb41, altered the flagellar movements of sperm and reduced the ability of sperm to bind to the oocyte in vitro. The Defb41-deficient iCre knock-in mouse model was furthermore utilized to generate Dicer1 conditional knock-out (cKO) mice. DICER1 is required for production of mature microRNAs in the regulation of gene expression by RNA interference. Dicer1 cKO gave rise to dedifferentiation of the epididymal epithelium and an altered expression of genes involved in lipid synthesis. As a consequence, the cholesterol:polyunsaturated fatty acid ratio of the Dicer1 cKO sperm membrane was increased, which resulted in membrane instability and infertility. In conclusion, the results of the Defb41 study further support the important role of β-defensin family members in sperm maturation. The regulatory role of Dicer1 was also shown to be required for epididymal development. In addition, the study is the first to show a clear connection between lipid homeostasis in the epididymis and sperm membrane integrity. Taken together, the results give important new evidence on the regulatory system guiding epididymal development and function
Resumo:
When compared to other model organisms whose genome is sequenced, the number of mutations identified in the mouse appears extremely reduced and this situation seriously hampers our understanding of mammalian gene function(s). Another important consequence of this shortage is that a majority of human genetic diseases still await an animal model. To improve the situation, two strategies are currently used: the first makes use of embryonic stem cells, in which one can induce knockout mutations almost at will; the second consists of a genome-wide random chemical mutagenesis, followed by screening for mutant phenotypes and subsequent identification of the genetic alteration(s). Several projects are now in progress making use of one or the other of these strategies. Here, we report an original effort where we mutagenized BALB/c males, with the mutagen ethylnitrosourea. Offspring of these males were screened for dominant mutations and a three-generation breeding protocol was set to recover recessive mutations. Eleven mutations were identified (one dominant and ten recessives). Three of these mutations are new alleles (Otop1mlh, Foxn1sepe and probably rodador) at loci where mutations have already been reported, while 4 are new and original alleles (carc, eqlb, frqz, and Sacc). This result indicates that the mouse genome, as expected, is far from being saturated with mutations. More mutations would certainly be discovered using more sophisticated phenotyping protocols. Seven of the 11 new mutant alleles induced in our experiment have been localized on the genetic map as a first step towards positional cloning.
Resumo:
Renal ischemia-reperfusion (IR) injury is the major cause of acute renal failure in native and transplanted kidneys. Mononuclear leukocytes have been reported in renal tissue as part of the innate and adaptive responses triggered by IR. We investigated the participation of CD4+ T lymphocytes in the pathogenesis of renal IR injury. Male mice (C57BL/6, 8 to 12 weeks old) were submitted to 45 min of ischemia by renal pedicle clamping followed by reperfusion. We evaluated the role of CD4+ T cells using a monoclonal depleting antibody against CD4 (GK1.5, 50 µ, ip), and class II-major histocompatibility complex molecule knockout mice. Both CD4-depleted groups showed a marked improvement in renal function compared to the ischemic group, despite the fact that GK1.5 mAb treatment promoted a profound CD4 depletion (to less than 5% compared to normal controls) only within the first 24 h after IR. CD4-depleted groups presented a significant improvement in 5-day survival (84 vs 80 vs 39%; antibody treated, knockout mice and non-depleted groups, respectively) and also a significant reduction in the tubular necrosis area with an early tubular regeneration pattern. The peak of CD4-positive cell infiltration occurred on day 2, coinciding with the high expression of ßC mRNA and increased urea levels. CD4 depletion did not alter the CD11b infiltrate or the IFN-g and granzyme-B mRNA expression in renal tissue. These data indicate that a CD4+ subset of T lymphocytes may be implicated as key mediators of very early inflammatory responses after renal IR injury and that targeting CD4+ T lymphocytes may yield novel therapies.
Resumo:
cell of origin and triggering events for leukaemia are mostly unknown. Here we show that the bone marrow contains a progenitor that expresses renin throughout development and possesses a B-lymphocyte pedigree. This cell requires RBP-J to differentiate. Deletion of RBP-J in these renin-expressing progenitors enriches the precursor B-cell gene programme and constrains lymphocyte differentiation, facilitated by H3K4me3 activating marks in genes that control the pre-B stage. Mutant cells undergo neoplastic transformation, and mice develop a highly penetrant B-cell leukaemia with multi-organ infiltration and early death. These reninexpressing cells appear uniquely vulnerable as other conditional models of RBP-J deletion do not result in leukaemia. The discovery of these unique renin progenitors in the bone marrow and the model of leukaemia described herein may enhance our understanding of normal and neoplastic haematopoiesis.