956 resultados para Computer models
Resumo:
Graphical tracking is a technique for crop scheduling where the actual plant state is plotted against an ideal target curve which encapsulates all crop and environmental characteristics. Management decisions are made on the basis of the position of the actual crop against the ideal position. Due to the simplicity of the approach it is possible for graphical tracks to be developed on site without the requirement for controlled experimentation. Growth models and graphical tracks are discussed, and an implementation of the Richards curve for graphical tracking described. In many cases, the more intuitively desirable growth models perform sub-optimally due to problems with the specification of starting conditions, environmental factors outside the scope of the original model and the introduction of new cultivars. Accurate specification for a biological model requires detailed and usually costly study, and as such is not adaptable to a changing cultivar range and changing cultivation techniques. Fitting of a new graphical track for a new cultivar can be conducted on site and improved over subsequent seasons. Graphical tracking emphasises the current position relative to the objective, and as such does not require the time consuming or system specific input of an environmental history, although it does require detailed crop measurement. The approach is flexible and could be applied to a variety of specification metrics, with digital imaging providing a route for added value. For decision making regarding crop manipulation from the observed current state, there is a role for simple predictive modelling over the short term to indicate the short term consequences of crop manipulation.
Resumo:
Mathematical models devoted to different aspects of building studies and brought about a significant shift in the way we view buildings. From this background a new definition of building has emerged known as intelligent building that requires integration of a variety of computer-based complex systems. Research relevant to intelligent continues to grow at a much faster pace. This paper is a review of different mathematical models described in literature, which make use of different mathematical methodologies, and are intended for intelligent building studies without complex mathematical details. Models are discussed under a wide classification. Mathematical abstract level of the applied models is detailed and integrated with its literature. The goal of this paper is to present a comprehensive account of the achievements and status of mathematical models in intelligent building research. and to suggest future directions in models.
Resumo:
It is argued that the truth status of emergent properties of complex adaptive systems models should be based on an epistemology of proof by constructive verification and therefore on the ontological axioms of a non-realist logical system such as constructivism or intuitionism. ‘Emergent’ properties of complex adaptive systems (CAS) models create particular epistemological and ontological challenges. These challenges bear directly on current debates in the philosophy of mathematics and in theoretical computer science. CAS research, with its emphasis on computer simulation, is heavily reliant on models which explore the entailments of Formal Axiomatic Systems (FAS). The incompleteness results of Gödel, the incomputability results of Turing, and the Algorithmic Information Theory results of Chaitin, undermine a realist (platonic) truth model of emergent properties. These same findings support the hegemony of epistemology over ontology and point to alternative truth models such as intuitionism, constructivism and quasi-empiricism.
Resumo:
The presented study examined the opinion of in-service and prospective chemistry teachers about the importance of usage of molecular and crystal models in secondary-level school practice, and investigated some of the reasons for their (non-) usage. The majority of participants stated that the use of models plays an important role in chemistry education and that they would use them more often if the circumstances were more favourable. Many teachers claimed that three-dimensional (3d) models are still not available in sufficient number at their schools; they also pointed to the lack of available computer facilities during chemistry lessons. The research revealed that, besides the inadequate material circumstances, less than one third of participants are able to use simple (freeware) computer programs for drawing molecular structures and their presentation in virtual space; however both groups of teachers expressed the willingness to improve their knowledge in the subject area. The investigation points to several actions which could be undertaken to improve the current situation.
Resumo:
The paper describes the implementation of an offline, low-cost Brain Computer Interface (BCI) alternative to more expensive commercial models. Using inexpensive general purpose clinical EEG acquisition hardware (Truscan32, Deymed Diagnostic) as the base unit, a synchronisation module was constructed to allow the EEG hardware to be operated precisely in time to allow for recording of automatically time stamped EEG signals. The synchronising module allows the EEG recordings to be aligned in stimulus time locked fashion for further processing by the classifier to establish the class of the stimulus, sample by sample. This allows for the acquisition of signals from the subject’s brain for the goal oriented BCI application based on the oddball paradigm. An appropriate graphical user interface (GUI) was constructed and implemented as the method to elicit the required responses (in this case Event Related Potentials or ERPs) from the subject.
Resumo:
An n-dimensional Mobius cube, 0MQ(n) or 1MQ(n), is a variation of n-dimensional cube Q(n) which possesses many attractive properties such as significantly smaller communication delay and stronger graph-embedding capabilities. In some practical situations, the fault tolerance of a distributed memory multiprocessor system can be measured more precisely by the connectivity of the underlying graph under forbidden fault set models. This article addresses the connectivity of 0MQ(n)/1MQ(n), under two typical forbidden fault set models. We first prove that the connectivity of 0MQ(n)/1MQ(n) is 2n - 2 when the fault set does not contain the neighborhood of any vertex as a subset. We then prove that the connectivity of 0MQ(n)/1MQ(n) is 3n - 5 provided that the neighborhood of any vertex as well as that of any edge cannot fail simultaneously These results demonstrate that 0MQ(n)/1MQ(n) has the same connectivity as Q(n) under either of the previous assumptions.
Resumo:
Population size estimation with discrete or nonparametric mixture models is considered, and reliable ways of construction of the nonparametric mixture model estimator are reviewed and set into perspective. Construction of the maximum likelihood estimator of the mixing distribution is done for any number of components up to the global nonparametric maximum likelihood bound using the EM algorithm. In addition, the estimators of Chao and Zelterman are considered with some generalisations of Zelterman’s estimator. All computations are done with CAMCR, a special software developed for population size estimation with mixture models. Several examples and data sets are discussed and the estimators illustrated. Problems using the mixture model-based estimators are highlighted.
Resumo:
An important goal in computational neuroanatomy is the complete and accurate simulation of neuronal morphology. We are developing computational tools to model three-dimensional dendritic structures based on sets of stochastic rules. This paper reports an extensive, quantitative anatomical characterization of simulated motoneurons and Purkinje cells. We used several local and global algorithms implemented in the L-Neuron and ArborVitae programs to generate sets of virtual neurons. Parameters statistics for all algorithms were measured from experimental data, thus providing a compact and consistent description of these morphological classes. We compared the emergent anatomical features of each group of virtual neurons with those of the experimental database in order to gain insights on the plausibility of the model assumptions, potential improvements to the algorithms, and non-trivial relations among morphological parameters. Algorithms mainly based on local constraints (e.g., branch diameter) were successful in reproducing many morphological properties of both motoneurons and Purkinje cells (e.g. total length, asymmetry, number of bifurcations). The addition of global constraints (e.g., trophic factors) improved the angle-dependent emergent characteristics (average Euclidean distance from the soma to the dendritic terminations, dendritic spread). Virtual neurons systematically displayed greater anatomical variability than real cells, suggesting the need for additional constraints in the models. For several emergent anatomical properties, a specific algorithm reproduced the experimental statistics better than the others did. However, relative performances were often reversed for different anatomical properties and/or morphological classes. Thus, combining the strengths of alternative generative models could lead to comprehensive algorithms for the complete and accurate simulation of dendritic morphology.
Resumo:
A vision system for recognizing rigid and articulated three-dimensional objects in two-dimensional images is described. Geometrical models are extracted from a commercial computer aided design package. The models are then augmented with appearance and functional information which improves the system's hypothesis generation, hypothesis verification, and pose refinement. Significant advantages over existing CAD-based vision systems, which utilize only information available in the CAD system, are realized. Examples show the system recognizing, locating, and tracking a variety of objects in a robot work-cell and in natural scenes.
Resumo:
This paper presents an enhanced hypothesis verification strategy for 3D object recognition. A new learning methodology is presented which integrates the traditional dichotomic object-centred and appearance-based representations in computer vision giving improved hypothesis verification under iconic matching. The "appearance" of a 3D object is learnt using an eigenspace representation obtained as it is tracked through a scene. The feature representation implicitly models the background and the objects observed enabling the segmentation of the objects from the background. The method is shown to enhance model-based tracking, particularly in the presence of clutter and occlusion, and to provide a basis for identification. The unified approach is discussed in the context of the traffic surveillance domain. The approach is demonstrated on real-world image sequences and compared to previous (edge-based) iconic evaluation techniques.
Resumo:
The dynamics of inter-regional communication within the brain during cognitive processing – referred to as functional connectivity – are investigated as a control feature for a brain computer interface. EMDPL is used to map phase synchronization levels between all channel pair combinations in the EEG. This results in complex networks of channel connectivity at all time–frequency locations. The mean clustering coefficient is then used as a descriptive feature encapsulating information about inter-channel connectivity. Hidden Markov models are applied to characterize and classify dynamics of the resulting complex networks. Highly accurate levels of classification are achieved when this technique is applied to classify EEG recorded during real and imagined single finger taps. These results are compared to traditional features used in the classification of a finger tap BCI demonstrating that functional connectivity dynamics provide additional information and improved BCI control accuracies.
Resumo:
Models of root system growth emerged in the early 1970s, and were based on mathematical representations of root length distribution in soil. The last decade has seen the development of more complex architectural models and the use of computer-intensive approaches to study developmental and environmental processes in greater detail. There is a pressing need for predictive technologies that can integrate root system knowledge, scaling from molecular to ensembles of plants. This paper makes the case for more widespread use of simpler models of root systems based on continuous descriptions of their structure. A new theoretical framework is presented that describes the dynamics of root density distributions as a function of individual root developmental parameters such as rates of lateral root initiation, elongation, mortality, and gravitropsm. The simulations resulting from such equations can be performed most efficiently in discretized domains that deform as a result of growth, and that can be used to model the growth of many interacting root systems. The modelling principles described help to bridge the gap between continuum and architectural approaches, and enhance our understanding of the spatial development of root systems. Our simulations suggest that root systems develop in travelling wave patterns of meristems, revealing order in otherwise spatially complex and heterogeneous systems. Such knowledge should assist physiologists and geneticists to appreciate how meristem dynamics contribute to the pattern of growth and functioning of root systems in the field.
Resumo:
This study investigates the numerical simulation of three-dimensional time-dependent viscoelastic free surface flows using the Upper-Convected Maxwell (UCM) constitutive equation and an algebraic explicit model. This investigation was carried out to develop a simplified approach that can be applied to the extrudate swell problem. The relevant physics of this flow phenomenon is discussed in the paper and an algebraic model to predict the extrudate swell problem is presented. It is based on an explicit algebraic representation of the non-Newtonian extra-stress through a kinematic tensor formed with the scaled dyadic product of the velocity field. The elasticity of the fluid is governed by a single transport equation for a scalar quantity which has dimension of strain rate. Mass and momentum conservations, and the constitutive equation (UCM and algebraic model) were solved by a three-dimensional time-dependent finite difference method. The free surface of the fluid was modeled using a marker-and-cell approach. The algebraic model was validated by comparing the numerical predictions with analytic solutions for pipe flow. In comparison with the classical UCM model, one advantage of this approach is that computational workload is substantially reduced: the UCM model employs six differential equations while the algebraic model uses only one. The results showed stable flows with very large extrudate growths beyond those usually obtained with standard differential viscoelastic models. (C) 2010 Elsevier Ltd. All rights reserved.