953 resultados para Computations
Resumo:
In this paper, we are concerned with the practical implementation of time optimal numerical techniques on underwater vehicles. We briefly introduce the model of underwater vehicle we consider and present the parameters for the test bed ODIN (Omni-Directional Intelligent Navigator). Then we explain the numerical method used to obtain time optimal trajectories with a structure suitable for the implementation. We follow this with a discussion on the modifications to be made considering the characteristics of ODIN. Finally, we illustrate our computations with some experimental results.
Resumo:
Bioinformatics is dominated by online databases and sophisticated web-accessible tools. As such, it is ideally placed to benefit from the rapid, purpose specific combination of services achievable via web mashups. The recent introduction of a number of sophisticated frameworks has greatly simplified the mashup creation process, making them accessible to scientists with limited programming expertise. In this paper we investigate the feasibility of mashups as a new approach to bioinformatic experimentation, focusing on an exploratory niche between interactive web usage and robust workflows, and attempting to identify the range of computations for which mashups may be employed. While we treat each of the major frameworks, we illustrate the ideas with a series of examples developed under the Popfly framework
Resumo:
Stochastic models for competing clonotypes of T cells by multivariate, continuous-time, discrete state, Markov processes have been proposed in the literature by Stirk, Molina-París and van den Berg (2008). A stochastic modelling framework is important because of rare events associated with small populations of some critical cell types. Usually, computational methods for these problems employ a trajectory-based approach, based on Monte Carlo simulation. This is partly because the complementary, probability density function (PDF) approaches can be expensive but here we describe some efficient PDF approaches by directly solving the governing equations, known as the Master Equation. These computations are made very efficient through an approximation of the state space by the Finite State Projection and through the use of Krylov subspace methods when evolving the matrix exponential. These computational methods allow us to explore the evolution of the PDFs associated with these stochastic models, and bimodal distributions arise in some parameter regimes. Time-dependent propensities naturally arise in immunological processes due to, for example, age-dependent effects. Incorporating time-dependent propensities into the framework of the Master Equation significantly complicates the corresponding computational methods but here we describe an efficient approach via Magnus formulas. Although this contribution focuses on the example of competing clonotypes, the general principles are relevant to multivariate Markov processes and provide fundamental techniques for computational immunology.
Resumo:
We describe a model of computation of the parallel type, which we call 'computing with bio-agents', based on the concept that motions of biological objects such as bacteria or protein molecular motors in confined spaces can be regarded as computations. We begin with the observation that the geometric nature of the physical structures in which model biological objects move modulates the motions of the latter. Consequently, by changing the geometry, one can control the characteristic trajectories of the objects; on the basis of this, we argue that such systems are computing devices. We investigate the computing power of mobile bio-agent systems and show that they are computationally universal in the sense that they are capable of computing any Boolean function in parallel. We argue also that using appropriate conditions, bio-agent systems can solve NP-complete problems in probabilistic polynomial time.
Resumo:
Conventional planning and decision making, with its sectoral and territorial emphasis and flat-map based processes are no longer adequate or appropriate for the increased complexity confronting airport/city interfaces. These crowed and often contested governance spaces demand a more iterative and relational planning and decision-making approach. Emergent GIS based planning and decision-making tools provide a mechanism which integrate and visually display an array of complex data, frameworks and scenarios/expectations, often in ‘real time’ computations. In so doing, these mechanisms provide a common ground for decision making and facilitate a more ‘joined-up’ approach to airport/city planning. This paper analyses the contribution of the Airport Metropolis Planning Support System (PSS) to sub-regional planning in the Brisbane Airport case environment.
Resumo:
Modelling an environmental process involves creating a model structure and parameterising the model with appropriate values to accurately represent the process. Determining accurate parameter values for environmental systems can be challenging. Existing methods for parameter estimation typically make assumptions regarding the form of the Likelihood, and will often ignore any uncertainty around estimated values. This can be problematic, however, particularly in complex problems where Likelihoods may be intractable. In this paper we demonstrate an Approximate Bayesian Computational method for the estimation of parameters of a stochastic CA. We use as an example a CA constructed to simulate a range expansion such as might occur after a biological invasion, making parameter estimates using only count data such as could be gathered from field observations. We demonstrate ABC is a highly useful method for parameter estimation, with accurate estimates of parameters that are important for the management of invasive species such as the intrinsic rate of increase and the point in a landscape where a species has invaded. We also show that the method is capable of estimating the probability of long distance dispersal, a characteristic of biological invasions that is very influential in determining spread rates but has until now proved difficult to estimate accurately.
Resumo:
Flow regime transition criteria are of practical importance for two-phase flow analyses at reduced gravity conditions. Here, flow regime transition criteria which take the friction pressure loss effect into account were studied in detail. Criteria at reduced gravity conditions were developed by extending an existing model with various experimental datasets taken at microgravity conditions showed satisfactory agreement. Sample computations of the model were performed at various gravity conditions, such as 0.196, 1.62, 3.71, and 9.81 m/s2 corresponding to micro-gravity and lunar, Martian and Earth surface gravity, respectively. It was found that the effect of gravity on bubbly-slug and slug-annular (churn) transitions in a two-phase flow system was more pronounced at low liquid flow conditions, whereas the gravity effect could be ignored at high mixture volumetric flux conditions. While for the annular flow transitions due to flow reversal and onset of dropset entrainment, higher superficial gas velocity was obtained at higher gravity level.
Resumo:
Object segmentation is one of the fundamental steps for a number of robotic applications such as manipulation, object detection, and obstacle avoidance. This paper proposes a visual method for incorporating colour and depth information from sequential multiview stereo images to segment objects of interest from complex and cluttered environments. Rather than segmenting objects using information from a single frame in the sequence, we incorporate information from neighbouring views to increase the reliability of the information and improve the overall segmentation result. Specifically, dense depth information of a scene is computed using multiple view stereo. Depths from neighbouring views are reprojected into the reference frame to be segmented compensating for imperfect depth computations for individual frames. The multiple depth layers are then combined with color information from the reference frame to create a Markov random field to model the segmentation problem. Finally, graphcut optimisation is employed to infer pixels belonging to the object to be segmented. The segmentation accuracy is evaluated over images from an outdoor video sequence demonstrating the viability for automatic object segmentation for mobile robots using monocular cameras as a primary sensor.
Resumo:
Purpose - Thermo-magnetic convection and heat transfer of paramagnetic fluid placed in a micro-gravity condition (g = 0) and under a uniform vertical gradient magnetic field in an open square cavity with three cold sidewalls have been studied numerically. Design/methodology/approach - This magnetic force is proportional to the magnetic susceptibility and the gradient of the square of the magnetic induction. The magnetic susceptibility is inversely proportional to the absolute temperature based on Curie’s law. Thermal convection of a paramagnetic fluid can therefore take place even in zero-gravity environment as a direct consequence of temperature differences occurring within the fluid due to a constant internal heat generation placed within a magnetic field gradient. Findings - Effects of magnetic Rayleigh number, Ra, Prandtl number, Pr, and paramagnetic fluid parameter, m, on the flow pattern and isotherms as well as on the heat absorption are presented graphically. It is found that the heat transfer rate is suppressed in increased of the magnetic Rayleigh number and the paramagnetic fluid parameter for the present investigation. Originality/value - It is possible to control the buoyancy force by using the super conducting magnet. To the best knowledge of the author no literature related to magnetic convection for this configuration is available.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
Vernier acuity, a form of visual hyperacuity, is amongst the most precise forms of spatial vision. Under optimal conditions Vernier thresholds are much finer than the inter-photoreceptor distance. Achievement of such high precision is based substantially on cortical computations, most likely in the primary visual cortex. Using stimuli with added positional noise, we show that Vernier processing is reduced with advancing age across a wide range of noise levels. Using an ideal observer model, we are able to characterize the mechanisms underlying age-related loss, and show that the reduction in Vernier acuity can be mainly attributed to the reduction in efficiency of sampling, with no significant change in the level of internal position noise, or spatial distortion, in the visual system.
Resumo:
Navigation through tessellated solids in GEANT4 can degrade computational performance, especially if the tessellated solid is large and is comprised of many facets. Redefining a tessellated solid as a mesh of tetrahedra is common in other computational techniques such as finite element analysis as computations need only consider local tetrahedrons rather than the tessellated solid as a whole. Here within we describe a technique that allows for automatic tetrahedral meshing of tessellated solids in GEANT4 and the subsequent loading of these meshes as assembly volumes; loading nested tessellated solids and tetrahedral meshes is also examined. As the technique makes the geometry suitable for automatic optimisation using smartvoxels, navigation through a simple tessellated volume has been found to be more than two orders of magnitude faster than that through the equivalent tessellated solid. Speed increases of more than two orders of magnitude were also observed for a more complex tessellated solid with voids and concavities. The technique was benchmarked for geometry load time, simulation run time and memory usage. Source code enabling the described functionality in GEANT4 has been made freely available on the Internet.
Resumo:
A synthesis is presented of the predictive capability of a family of near-wall wall-normal free Reynolds stress models (which are completely independent of wall topology, i.e., of the distance fromthe wall and the normal-to-thewall orientation) for oblique-shock-wave/turbulent-boundary-layer interactions. For the purpose of comparison, results are also presented using a standard low turbulence Reynolds number k–ε closure and a Reynolds stress model that uses geometric wall normals and wall distances. Studied shock-wave Mach numbers are in the range MSW = 2.85–2.9 and incoming boundary-layer-thickness Reynolds numbers are in the range Reδ0 = 1–2×106. Computations were carefully checked for grid convergence. Comparison with measurements shows satisfactory agreement, improving on results obtained using a k–ε model, and highlights the relative importance of redistribution and diffusion closures, indicating directions for future modeling work.
Resumo:
Substantial research efforts have been expended to deal with the complexity of concurrent systems that is inherent to their analysis, e.g., works that tackle the well-known state space explosion problem. Approaches differ in the classes of properties that they are able to suitably check and this is largely a result of the way they balance the trade-off between analysis time and space employed to describe a concurrent system. One interesting class of properties is concerned with behavioral characteristics. These properties are conveniently expressed in terms of computations, or runs, in concurrent systems. This article introduces the theory of untanglings that exploits a particular representation of a collection of runs in a concurrent system. It is shown that a representative untangling of a bounded concurrent system can be constructed that captures all and only the behavior of the system. Representative untanglings strike a unique balance between time and space, yet provide a single model for the convenient extraction of various behavioral properties. Performance measurements in terms of construction time and size of representative untanglings with respect to the original specifications of concurrent systems, conducted on a collection of models from practice, confirm the scalability of the approach. Finally, this article demonstrates practical benefits of using representative untanglings when checking various behavioral properties of concurrent systems.
Resumo:
Secure communications between large number of sensor nodes that are randomly scattered over a hostile territory, necessitate efficient key distribution schemes. However, due to limited resources at sensor nodes such schemes cannot be based on post deployment computations. Instead, pairwise (symmetric) keys are required to be pre-distributed by assigning a list of keys, (a.k.a. key-chain), to each sensor node. If a pair of nodes does not have a common key after deployment then they must find a key-path with secured links. The objective is to minimize the keychain size while (i) maximizing pairwise key sharing probability and resilience, and (ii) minimizing average key-path length. This paper presents a deterministic key distribution scheme based on Expander Graphs. It shows how to map the parameters (e.g., degree, expansion, and diameter) of a Ramanujan Expander Graph to the desired properties of a key distribution scheme for a physical network topology.