959 resultados para Computação reconfigurável
Resumo:
Access control is a software engineering challenge in database applications. Currently, there is no satisfactory solution to dynamically implement evolving fine-grained access control mechanisms (FGACM) on business tiers of relational database applications. To tackle this access control gap, we propose an architecture, herein referred to as Dynamic Access Control Architecture (DACA). DACA allows FGACM to be dynamically built and updated at runtime in accordance with the established fine-grained access control policies (FGACP). DACA explores and makes use of Call Level Interfaces (CLI) features to implement FGACM on business tiers. Among the features, we emphasize their performance and their multiple access modes to data residing on relational databases. The different access modes of CLI are wrapped by typed objects driven by FGACM, which are built and updated at runtime. Programmers prescind of traditional access modes of CLI and start using the ones dynamically implemented and updated. DACA comprises three main components: Policy Server (repository of metadata for FGACM), Dynamic Access Control Component (DACC) (business tier component responsible for implementing FGACM) and Policy Manager (broker between DACC and Policy Server). Unlike current approaches, DACA is not dependent on any particular access control model or on any access control policy, this way promoting its applicability to a wide range of different situations. In order to validate DACA, a solution based on Java, Java Database Connectivity (JDBC) and SQL Server was devised and implemented. Two evaluations were carried out. The first one evaluates DACA capability to implement and update FGACM dynamically, at runtime, and, the second one assesses DACA performance against a standard use of JDBC without any FGACM. The collected results show that DACA is an effective approach for implementing evolving FGACM on business tiers based on Call Level Interfaces, in this case JDBC.
Resumo:
Recentemente assistimos a uma evolução da relação do Homem com a tecnologia, em larga medida acompanhada por novos modelos de interacção que modificam a forma de conceber os artefactos e constroem novos contextos de uso. Procuramos investigar, na presente tese, uma das abordagens emergentes, o universo dos media tangíveis, articulando a perspectiva do design da tecnologia orientada para a Human-Computer Interation (HCI), com a dimensão social, cultural e estética no uso da tecnologia. Os media tangíveis, ao contrário do que sucede com os conteúdos digitais convencionais, têm espessura e expressão física e, porque são dotados de um corpo que habita o espaço das disposições físicas, estão sujeitos à acção do mundo cultural e das práticas sociais que regem os demais objectos físicos que podemos encontrar no nosso quotidiano. Esta nova relação com a tecnologia digital obrigará as disciplinas que se encontram mais próximas do desenvolvimento tecnológico, tais como o Design de Interacção e a HCI, a abrirem-se aos contributos e abordagens das ciências humanas. Admitindo que a natureza subjacente ao processo da adaptabilidade no ambiente doméstico altera o equilíbrio da relação entre o design e o uso da tecnologia, julgamos ser essencial o desenvolvimento de uma fenomenologia da interação. Por outro lado, a adaptabilidade dos media tangíveis apresenta um conjunto de dificuldades, não apenas de ordem técnica, mas também de natureza conceptual, que têm dificultado o desenvolvimento e a implementação no terreno de tecnologias personalizáveis. Um dos objectivos da presente tese consiste em investigar um quadro conceptual capaz de enquadrar o fenómeno da adaptabilidade dos media tangíveis, e desenvolver uma tecnologia que possa servir de objecto a um estudo empírico com base numa abordagem etnográfica.
Resumo:
Interest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.
Resumo:
When developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.
Resumo:
Optical networks are under constant evolution. The growing demand for dynamism require devices that can accommodate different types of traffic. Thus the study of transparent optical networks arises. This approach makes optical networks more "elegant" , due to a more efficient use of network resources. In this thesis, the author proposes devices that intend to form alternative approaches both in the state of art of these same technologies both in the fitting of this technologies in transparent optical networks. Given that full transparency is difficult to achieve with current technology (perhaps with more developed optical computing this is possible), the author proposes techniques with different levels of transparency. On the topic of performance of optical networks, the author proposes two techniques for monitoring chromatic dispersion with different levels of transparency. In Chapter 3 the proposed technique seems to make more sense for long-haul optical transmission links and high transmission rates, not only due to its moderate complexity but also to its potential moderate/high cost. However it is proposed to several modulation formats, particularly those that have a protruding clock component. In Chapter 4 the transparency level was not tested for various modulation formats, however some transparency is achieved by not adding any electrical device after the receiver (other than an analog-digital converter). This allows that this technique can operate at high transmission rates in excess of 100 Gbit / s, if electro-optical asynchronous sampling is used before the optical receiver. Thus a low cost and low bandwidth photo-detector can be used. In chapter 5 is demonstrated a technique for simultaneously monitoring multiple impairments of the optical network by generating novel performance analysis diagrams and by use of artificial neural networks. In chapter 6 the author demonstrates an all-optical technique for controlling the optical state of polarization and an example of how all-optical signal processing can fully cooperate with optical performance monitoring.
Resumo:
Painterly rendering (non-photorealistic rendering or NPR) aims at translating photographs into paintings with discrete brush strokes, simulating certain techniques (im- or expressionism) and media (oil or watercolour). Recently, our research into visual perception and models of processes in the visual cortex resulted in a new rendering scheme, in which detected lines and edges at different scales are translated into brush strokes of different sizes. In order to prepare a version which is suitable for many users, including children, the design of the interface in terms of window and menu system is very important. Discussions with artists and non-artists led to three design criteria: (1) the interface must reflect the procedures and possibilities that real painters follow and use, (2) it must be based on only one window, and (3) the menu system must be very simple, avoiding a jungle of menus and sub-menus. This paper explains the interface that has been developed.
Resumo:
Tese dout., Engenharia electrónica e computação - Processamento de sinal, Universidade do Algarve, 2008
Resumo:
Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009
Resumo:
Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2005
Resumo:
Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009
Resumo:
Prémio de Melhor Artigo de Jovem Investigador atribuído pela empresa Timberlake, apresentado na 1ª Conferência Nacional sobre Computação Simbólica no Ensino e na Investigação - CSEI2012, que decorreu no IST nos dias 2 e 3 de Abril.
Resumo:
Tese de dout., Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2005
Resumo:
Tese de dout., Engenharia Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2003
Resumo:
All systems found in nature exhibit, with different degrees, a nonlinear behavior. To emulate this behavior, classical systems identification techniques use, typically, linear models, for mathematical simplicity. Models inspired by biological principles (artificial neural networks) and linguistically motivated (fuzzy systems), due to their universal approximation property, are becoming alternatives to classical mathematical models. In systems identification, the design of this type of models is an iterative process, requiring, among other steps, the need to identify the model structure, as well as the estimation of the model parameters. This thesis addresses the applicability of gradient-basis algorithms for the parameter estimation phase, and the use of evolutionary algorithms for model structure selection, for the design of neuro-fuzzy systems, i.e., models that offer the transparency property found in fuzzy systems, but use, for their design, algorithms introduced in the context of neural networks. A new methodology, based on the minimization of the integral of the error, and exploiting the parameter separability property typically found in neuro-fuzzy systems, is proposed for parameter estimation. A recent evolutionary technique (bacterial algorithms), based on the natural phenomenon of microbial evolution, is combined with genetic programming, and the resulting algorithm, bacterial programming, advocated for structure determination. Different versions of this evolutionary technique are combined with gradient-based algorithms, solving problems found in fuzzy and neuro-fuzzy design, namely incorporation of a-priori knowledge, gradient algorithms initialization and model complexity reduction.
Resumo:
Dissertação de mestrado, Engenharia de Sistemas e Computação, Unidade de Ciências Exactas e Humanas, Universidade do Algarve, 1997