980 resultados para College stories, American.
Resumo:
We present the results of a search for the production of an excited state of the muon, mu(*), in proton antiproton collisions at root s =1.96 TeV. The data have been collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 380 pb(-1). We search for mu(*) in the process p (p) over bar ->mu(*)mu, with the mu(*) subsequently decaying to a muon plus photon. No excess above the standard model expectation is observed in data. Interpreting our data in the context of a model that describes mu(*) production by four-fermion contact interactions and mu(*) decay via electroweak processes, we set a 95% confidence level production cross section upper limit ranging from 0.057 to 0.112 pb, depending on the mass of the excited muon. Choosing the scale for contact interactions to be Lambda=1 TeV, excited muon masses below 618 GeV are excluded.
Resumo:
Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription. [S1050-2947(99)04604-1].
Resumo:
We investigate the possible decay of protons in geodesic circular motion around neutral compact objects. Weak and strong decay rates and the associated emitted powers are calculated using a semiclassical approach. Our results are discussed with respect to distinct ones in the literature, which consider the decay of accelerated protons in electromagnetic fields. A number of consistency checks are presented along the paper.
Resumo:
We have performed the first direct measurement of the time-integrated flavor untagged charge asymmetry in semileptonic B-s(0) decays A(SL)(s,unt) by comparing the decay rate of B-s(0) -> mu(+) D-s(-) nu X, where D-s(-) -> phi pi(-) and phi -> K+K-, with the charge-conjugate (B) over bar (0)(s) decay rate. This sample was selected from 1: 3 fb(-1) of data collected by the D0 experiment in run II of the Fermilab Tevatron collider. We obtain A(SL)(s,unt) = [1.23 +/- 0.97(stat) +/- 0.17(syst)] x 10(-2). Assuming that Delta m(s)/(Gamma) over bar (s) >> 1, this result can be translated into a measurement of the CP-violating phase in B-s(0) mixing: Delta Gamma(s)/Delta m(s) tan phi(s) = [2.45 +/- 1.93(stat) +/- 0.35(syst)] x 10(-2).
Resumo:
We search for the technicolor process p(p) over bar ->rho(T)/omega(T)-> W pi(T) in events containing one electron and two jets, in data corresponding to an integrated luminosity of 390 pb(-1), recorded by the D0 experiment at the Fermilab Tevatron. Technicolor predicts that technipions pi(T) decay dominantly into b(b) over bar, b(c) over bar, or (b) over barc, depending on their charge. In these events b and c quarks are identified by their secondary decay vertices within jets. Two analysis methods based on topological variables are presented. Since no excess above the standard model prediction was found, the result is presented as an exclusion in the pi(T) vs rho(T) mass plane for a given set of model parameters.
Resumo:
We study the phenomenon of unlimited energy growth for a classical particle moving in the annular billiard. The model is considered under two different geometrical situations: static and breathing boundaries. We show that when the dynamics is chaotic for the static case, the introduction of a time-dependent perturbation allows that the particle experiences the phenomenon of Fermi acceleration even when the oscillations are periodic.
Resumo:
The influence of dissipation on the simplified Fermi-Ulam accelerator model (SFUM) is investigated. The model is described in terms of a two-dimensional nonlinear mapping obtained from differential equations. It is shown that a dissipative SFUM possesses regions of phase space characterized by the property of area preservation.
Resumo:
Some scaling properties for classical light ray dynamics inside a periodically corrugated waveguide are studied by use of a simplified two-dimensional nonlinear area-preserving map. It is shown that the phase space is mixed. The chaotic sea is characterized using scaling arguments revealing critical exponents connected by an analytic relationship. The formalism is widely applicable to systems with mixed phase space, and especially in studies of the transition from integrability to nonintegrability, including that in classical billiard problems.
Resumo:
The quantum Brownian particle, immersed in a heat bath, is described by a statistical operator whose evolution is ruled by a generalized master equation (GME). The heat bath's degrees of freedom are considered to be either white-noise or colored-noise correlated, while the GME is considered under either the Markov or non-Markov approaches. The comparisons between these considerations are fully developed, and their physical meaning is discussed.
Resumo:
Using data from a single simulation we obtain Monte Carlo renormalization-group information in a finite region of parameter space by adapting the Ferrenberg-Swendsen histogram method. Several quantities are calculated in the two-dimensional N 2 Ashkin-Teller and Ising models to show the feasibility of the method. We show renormalization-group Hamiltonian flows and critical-point location by matching of correlations by doing just two simulations at a single temperature in lattices of different sizes to partially eliminate finite-size effects.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A semiclassical approach to study pure Coulomb excitation of Pb-208 giant dipole isovector resonance is examined. We consider medium energy projectiles and assume the target excitation to be described by a simple Goldhaber-Teller model. It is shown that the main features concerning the angular distribution are obtained in the angular range described by the model and an estimate is made of the pure Coulomb dipole contribution to the measured cross sections.
Resumo:
The result of few-particle ground-state calculation employing a two-particle nonlocal potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unusually strong attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of pi as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states.