996 resultados para Chaotic systems
Resumo:
We consider finite-size particles colliding elastically, advected by a chaotic flow. The collisionless dynamics has a quasiperiodic attractor and particles are advected towards this attractor. We show in this work that the collisions have dramatic effects in the system's dynamics, giving rise to collective phenomena not found in the one-particle dynamics. In particular, the collisions induce a kind of instability, in which particles abruptly spread out from the vicinity of the attractor, reaching the neighborhood of a coexisting chaotic saddle, in an autoexcitable regime. This saddle, not present in the dynamics of a single particle, emerges due to the collective particle interaction. We argue that this phenomenon is general for advected, interacting particles in chaotic flows.
Resumo:
The existence of a reversed magnetic shear in tokamaks improves the plasma confinement through the formation of internal transport barriers that reduce radial particle and heat transport. However, the transport poloidal profile is much influenced by the presence of chaotic magnetic field lines at the plasma edge caused by external perturbations. Contrary to many expectations, it has been observed that such a chaotic region does not uniformize heat and particle deposition on the inner tokamak wall. The deposition is characterized instead by structured patterns called magnetic footprints, here investigated for a nonmonotonic analytical plasma equilibrium perturbed by an ergodic limiter. The magnetic footprints appear due to the underlying mathematical skeleton of chaotic magnetic field lines determined by the manifold tangles. For the investigated edge safety factor ranges, these effects on the wall are associated with the field line stickiness and escape channels due to internal island chains near the flux surfaces. Comparisons between magnetic footprints and escape basins from different equilibrium and ergodic limiter characteristic parameters show that highly concentrated magnetic footprints can be avoided by properly choosing these parameters. (c) 2008 American Institute of Physics.
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
The structure of probability currents is studied for the dynamical network after consecutive contraction on two-state, nonequilibrium lattice systems. This procedure allows us to investigate the transition rates between configurations on small clusters and highlights some relevant effects of lattice symmetries on the elementary transitions that are responsible for entropy production. A method is suggested to estimate the entropy production for different levels of approximations (cluster sizes) as demonstrated in the two-dimensional contact process with mutation.
Resumo:
We study a stochastic lattice model describing the dynamics of coexistence of two interacting biological species. The model comprehends the local processes of birth, death, and diffusion of individuals of each species and is grounded on interaction of the predator-prey type. The species coexistence can be of two types: With self-sustained coupled time oscillations of population densities and without oscillations. We perform numerical simulations of the model on a square lattice and analyze the temporal behavior of each species by computing the time correlation functions as well as the spectral densities. This analysis provides an appropriate characterization of the different types of coexistence. It is also used to examine linked population cycles in nature and in experiment.
Resumo:
We investigate the influence of couplings among continuum states in collisions of weakly bound nuclei. For this purpose, we compare cross sections for complete fusion, breakup, and elastic scattering evaluated by continuum discretized coupled channel (CDCC) calculations, including and not including these couplings. In our study, we discuss this influence in terms of the polarization potentials that reproduces the elastic wave function of the coupled channel method in single channel calculations. We find that the inclusion of couplings among continuum states renders the real part of the polarization potential more repulsive, whereas it leads to weaker absorption to the breakup channel. We show that the noninclusion of continuum-continuum couplings in CDCC calculations may lead to qualitative and quantitative wrong conclusions.
Resumo:
The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.
Resumo:
The study of spectral behavior of networks has gained enthusiasm over the last few years. In particular, random matrix theory (RMT) concepts have proven to be useful. In discussing transition from regular behavior to fully chaotic behavior it has been found that an extrapolation formula of the Brody type can be used. In the present paper we analyze the regular to chaotic behavior of small world (SW) networks using an extension of the Gaussian orthogonal ensemble. This RMT ensemble, coined the deformed Gaussian orthogonal ensemble (DGOE), supplies a natural foundation of the Brody formula. SW networks follow GOE statistics until a certain range of eigenvalue correlations depending upon the strength of random connections. We show that for these regimes of SW networks where spectral correlations do not follow GOE beyond a certain range, DGOE statistics models the correlations very well. The analysis performed in this paper proves the utility of the DGOE in network physics, as much as it has been useful in other physical systems.
Resumo:
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Resumo:
We report on temperature-dependent magnetoresistance measurements in balanced double quantum wells exposed to microwave irradiation for various frequencies. We have found that the resistance oscillations are described by the microwave-induced modification of electron distribution function limited by inelastic scattering (inelastic mechanism), up to a temperature of T*similar or equal to 4 K. With increasing temperature, a strong deviation of the oscillation amplitudes from the behavior predicted by this mechanism is observed, presumably indicating a crossover to another mechanism of microwave photoresistance, with similar frequency dependence. Our analysis shows that this deviation cannot be fully understood in terms of contribution from the mechanisms discussed in theory.
Resumo:
Magnetoresistance of two-dimensional electron systems with several occupied subbands oscillates owing to periodic modulation of the probability of intersubband transitions by the quantizing magnetic field. In addition to previous investigations of these magnetointersubband (MIS) oscillations in two-subband systems, we report on both experimental and theoretical studies of such a phenomenon in three-subband systems realized in triple quantum wells. We show that the presence of more than two subbands leads to a qualitatively different MIS oscillation picture, described as a superposition of several oscillating contributions. Under a continuous microwave irradiation, the magnetoresistance of triple-well systems exhibits an interference of MIS oscillations and microwave-induced resistance oscillations. The theory explaining these phenomena is presented in the general form, valid for an arbitrary number of subbands. A comparison of theory and experiment allows us to extract temperature dependence of quantum lifetime of electrons and to confirm the applicability of the inelastic mechanism of microwave photoresistance for the description of magnetotransport in multilayer systems.
Emergent and reentrant fractional quantum Hall effect in trilayer systems in a tilted magnetic field
Resumo:
Magnetotransport measurements in triple-layer electron systems with high carrier density reveal fractional quantum Hall effect at total filling factors nu>2. With an in-plane magnetic field we are able to control the suppression of interlayer tunneling which causes a collapse of the integer quantum Hall plateaus at nu=2 and nu=4, and an emergence of fractional quantum Hall states with increasing tilt angles. The nu=4 state is replaced by three fractional quantum Hall states with denominator 3. The state nu=7/3 demonstrates reentrant behavior and the emergent state at nu=12/5 has a nonmonotonic behavior with increasing in-plane field. We attribute the observed fractional quantum Hall plateaus to correlated states in a trilayer system.
Resumo:
We report on the observation of microwave-induced resistance oscillations associated with the fractional ratio n/m of the microwave irradiation frequency to the cyclotron frequency for m up to 8 in a two-dimensional electron system with high electron density. The features are quenched at high microwave frequencies independent of the fractional order m. We analyze temperature, power, and frequency dependencies of the magnetoresistance oscillations and discuss them in connection with existing theories.
Resumo:
An effective treatment of the intramolecular degrees of freedom is presented for water, where these modes are decoupled from the intermolecular ones, ""adiabatically"" allowing these coordinates to be positioned at their local minimum of the potential energy surface. We perform ab initio Monte Carlo simulations with the configurational energies obtained via density functional theory. We study a water dimer as a prototype system, and even in this simple case the intramolecular relaxations are very important to properly describe properties such as the dipole moment. We show that rigid simulations do not correctly sample the phase space, resulting in an average dipole moment smaller than the one obtained with the adiabatic model, which is closer to the experimental result. (c) 2008 American Institute of Physics.
Resumo:
The influence of microwave irradiation on dissipative and Hall resistance in high-quality bilayer electron systems is investigated experimentally. We observe a deviation from odd symmetry under magnetic-field reversal in the microwave-induced Hall resistance boolean AND R(xy), whereas the dissipative resistance boolean AND R(xx) obeys even symmetry. Studies of Delta R(xy) as a function of the microwave electric field and polarization exhibit a strong and nontrivial power and polarization dependence. The obtained results are discussed in connection to existing theoretical models of microwave-induced photoconductivity.