988 resultados para CAPILLARY-ELECTROPHORESIS SYSTEM
Resumo:
We present a new class of sequential adsorption models in which the adsorbing particles reach the surface following an inclined direction (shadow models). Capillary electrophoresis, adsorption in the presence of a shear, and adsorption on an inclined substrate are physical manifestations of these models. Numerical simulations are carried out to show how the new adsorption mechanisms are responsible for the formation of more ordered adsorbed layers and have important implications in the kinetics, in particular, modifying the jamming limit.
Resumo:
In Pseudomonas fluorescens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway is instrumental for secondary metabolism and biocontrol of root pathogens via the expression of regulatory small RNAs (sRNAs). Furthermore, in strain CHA0, an imbalance in the Krebs cycle can affect the strain's ability to produce extracellular secondary metabolites, including biocontrol factors. Here, we report the metabolome of wild-type CHA0, a gacA-negative mutant, which has lost Gac/Rsm activities, and a retS-negative mutant, which shows strongly enhanced Gac/Rsm-dependent activities. Capillary electrophoresis-based metabolomic profiling revealed that the gacA and retS mutations had opposite effects on the intracellular levels of a number of central metabolites, suggesting that the Gac/Rsm pathway regulates not only secondary metabolism but also primary metabolism in strain CHA0. Among the regulated metabolites identified, the alarmone guanosine tetraphosphate (ppGpp) was characterized in detail by the construction of relA (for ppGpp synthase) and spoT (for ppGpp synthase/hydrolase) deletion mutants. In a relA spoT double mutant, ppGpp synthesis was completely abolished, the expression of Rsm sRNAs was attenuated, and physiological functions such as antibiotic production, root colonization, and plant protection were markedly diminished. Thus, ppGpp appears to be essential for sustaining epiphytic fitness and biocontrol activity of strain CHA0.
Resumo:
The fundamentals of Real-time Polymerase Chain Reaction,Automated capillary electrophoresis -Sanger sequencing and Fragmentanalysis- and "Next-generation" sequencing are reviewed. An overview ofapplications is presented using our own examples carried out in our facility.
Resumo:
The objective of this work was to characterize the grape germplasm in Santa Catarina, Brazil, using microsatellite DNA markers (simple sequence repeats - SSR). The DNA samples were collected from leaves and shoots of accessions of public and private collections from the counties Urussanga, Nova Trento, Rodeio, São Joaquim, Campos Novos, Videira, and Água Doce. Ten SSR loci (VVS2, VVMD5, VVMD7, VVMD27, VrZAG62, VrZAG79, VVMD25, VVMD28, VVMD31, and VVMD32) were analysed by capillary electrophoresis. Molecular profiling was conducted for 190 grapevines (European, American, and hybrids), and 67 genotypes were obtained. The data were compared with each other and with those from the literature and from online databases, in order to identify varieties and discover cases of synonymy and homonymy. Forty molecular profiles corresponded to known varieties, while 27 genotypes were described for the first time. The existence of typical germplasm composed mainly of American and hybrid varieties is an important finding for local viticulture. Applications of the results rely on quality control and certification at the nursery level. Increasing precision in the characterization of grapevine genotypes may help breeding programs.
Resumo:
The objective of this work was to determine the geographic origin of the Madeiran common bean (Phaseolus vulgaris) gene pool. Phaseolin patterns of 50 accessions representing the diversity of common bean collected in Madeira, Portugal, and conserved in the ISOPlexis Germplasm Bank, were analysed using the Experion automated electrophoresis system, based on lab-on-a-chip technology. Five common bean standard varieties with typical phaseolin patterns were used to determine the phytogeographical origin of the Madeiran common bean accessions. Ninety two percent of the accessions exhibited a phaseolin pattern consistent with the one of common bean types belonging to the Andean gene pool, while the origin of the remaining 8% of the accessions was indistinguishable. The application of a similarity coefficient of 85%, based on Pearson correlations, increases the number of accessions with uncertain pattern. The analytical approach used permitted the determination of the origin of the common bean gene pool, which is Andean in 98% of the cases, and clustering of the observed variability among the Madeiran common beans.
Resumo:
Enantiomeerit ovat yhdisteitä, jotka ovat toistensa peilikuvamuotoja. Enantiomeerien erotusmenetelmiä ovat neste-nesteuutto, kalvotekniikka, kiteytys, kromatografia ja kapillaarielektroforeesi. Nestekromatografinen erotus perustuu joko suoraan erotukseen tai epäsuoraan erotukseen. Kiraaliset stationaarifaasit erottavat yhdisteet kolonnissa suoralla erotuksella. Derivoimattomia aminohappojen enantiomeerejä on erotettu käyttäen ligandinvaihto-, kruunueetteri-, antibiootti- ja polysakkaridistationaarifaaseja. Epäsuora erotus vaatii erotettavan enantiomeeriparin esikäsittelyn ennen kolonnia. Markkinoilta löytyy niukasti preparatiiviseen mittakaavaan soveltuvia enantiomeerien erotusmateriaaleja. Työn kokeellisessa osassa enantiomeerien erotuksia tehtiin sekä analyyttisessä mittakaavassa että preparatiivisessa mittakaavassa. Tutkittavina pääkomponentteina aminohapoista olivat metioniinin, proliinin ja seriinin enantiomeeriparit. Analyyttisessä mittakaavassa kuparimuotoisella ligandinvaihtokolonnilla tehty erotus onnistui erittäin hyvin. Piikkien resoluutioiden arvot vaihtelivat tyypillisesti välillä 2,0-35 ja erotustekijöiden arvot välillä 1,5-30. Parhaiten onnistuttiin erottamaan metioniinin enantiomeerit toisistaan. Prepatatiivisen mittakaavan erotusmateriaalin tutkimus keskittyi materiaalin kokeiluun ja kehitykseen aminohappojen enantiomeerien erotukseen soveltuvaksi. Erotusmateriaalilla onnistuttiin erottamaan aminohappoja toisistaan, mutta aminohappojen enantiomeerien erottumista ei onnistuttu selkeästi havaitsemaan. Erotusmateriaali toimi parhaiten muunnettuna alkaalisissa olosuhteissa kuparimuotoiseksi. Kuparin pysymättömyys erotusmateriaalissa aiheutti kuitenkin ongelmia kokeiden toistettavuuteen.
Resumo:
To-date, there has been no effective chiral capillary electrophoresis-mass spectrometry (CE-MS) method reported for the simultaneous enantioseparation of the antidepressant drug, venlafaxine (VX) and its structurally-similar major metabolite, O-desmethylvenlafaxine (O-DVX). This is mainly due to the difficulty of identifying MS compatible chiral selector, which could provide both high enantioselectivity and sensitive MS detection. In this work, poly-sodium N-undecenoyl-L,L-leucylalaninate (poly-L,L-SULA) was employed as a chiral selector after screening several dipeptide polymeric chiral surfactants. Baseline separation of both O-DVX and VX enantiomers was achieved in 15min after optimizing the buffer pH, poly-L,L-SULA concentration, nebulizer pressure and separation voltage. Calibration curves in spiked plasma (recoveries higher than 80%) were linear over the concentration range 150-5000ng/mL for both VX and O-DVX. The limit of detection (LOD) was found to be as low as 30ng/mL and 21ng/mL for O-DVX and VX, respectively. This method was successfully applied to measure the plasma concentrations of human volunteers receiving VX or O-DVX orally when co-administered without and with indinivar therapy. The results suggest that micellar electrokinetic chromatography electrospray ionization-tandem mass spectrometry (MEKC-ESI-MS/MS) is an effective low cost alternative technique for the pharmacokinetics and pharmacodynamics studies of both O-DVX and VX enantiomers. The technique has potential to identify drug-drug interaction involving VX and O-DVX enantiomers while administering indinivar therapy.
Resumo:
Since its inception in the 80's, capillary electrophoresis has matured into a well established technique for the separation and analysis of complex samples. One of its strongest aspects is the ability to handle materials from a diversity of chemical classes, ranging from few to millions of Daltons. This is only possible because several modes of electrophoresis can be performed in a single capillary format. In this work, relevant aspects of capillary zone electrophoresis in its three modes (free solution, micellar and gel), capillary isoelectric focusing and capillary isotachophoresis are discussed and many representative applications are presented.
Resumo:
Capillary electrophoresis (CE) encompasses a number of characteristics quite suitable for the simultaneous analysis of small ions such as high efficiency and resolving power, directly associated to its impressively high peak capacity, and short analysis time. In appropriate conditions, it is possible to perform the separation of approximately 36 anions in less than 3 minutes. In this work, the mechanisms by which anion analysis is performed was criteriously discussed, and a thorough review of the literature in the past 5 years, focusing mostly in applications of CE to anion analysis in real matrices, was presented.
Resumo:
In this work, the analysis of cations by capillary electrophoresis is reviewed from the theoretical and practical point of view. Separation mechanisms and detection modes are discussed and illustrated. A thorough compilation of the literature over the last ten years, regarding applications of the technique to the analysis of cations in real matrices, is presented.
Resumo:
A review about the state-of-the-art of flow injection analysis (FIA) -- capillary electrophoresis (CE) systems is presented. The basic principles of flow injection and capillary electrophoresis are briefly revised. The main aspects of the FIA-CE hybridization, including advantages and shortcomings, are discussed. Some applications involving all different designs are also presented. This review covers the literature from 1997 up to 2000.
Resumo:
This review focuses the development of electrochemical detection systems coupled to capillary electrophoresis. Conductometric, amperometric, voltametric, and potentiometric modes of detection are reviewed. The positioning of the electrodes, interferences of high electric field, and the materials employed in the fabrication and modification of the electrodes are discussed. The advantages of the use of electrochemical detection with capillary electrophoresis, regarding to the sensitivity and selectivity, is exemplified with a large number of applications. Also, the use of electrochemical detection systems in microchip technology is addressed.
Resumo:
A digital multimeter (~U$ 240.00 on the national market) connected to a microcomputer by a RS-232 serial interface is proposed for data acquisition in equipment with analog output. Data are measured at the rate of 2 points per second and stored in text files by the software that accompanies the device, running in a Windows environment. The performance of the multimeter was verified by monitoring the transient signals generated in flow injection systems associated with fluorimetric, spectrophotometric and flame photometric detection. In addition, the performance of the proposed device was similar to that attained by employing an interface card with a 12-bit analog-to-digital converter for acquisition of the signals generated by a capillary electrophoresis equipment with oscillometric detection.
Resumo:
This paper describes the analytical methods for determination of total chlorogenic acid (CGA) and their individual isomers. Spectrofotometric methods are adequate for total CGA analysis in green coffee but they can provide inflated results for coffee products. High pressure liquid chromatography (HPLC) with gel permeation column and ultraviolet (UV) monitoring is adequate for the simultaneous analysis of total CGA, alkaloids and sugars in coffee products. HPLC-UV-reversed phase is a simple, rapid and precise method for the determination of the individual isomers of CGA. Gas chromatography (GC) also is applied to the analysis of the individual isomers but phenolic acids need to be derivatized before analysis. Both HPLC- and GC-mass spectrometry provide an unequivocal identification of the individual isomers. The capillary electrophoresis method is simple, rapid and adequate to the simultaneous analysis of polyphenols and xanthines. Advantages and limitations of each method are discussed throughout the text.
Resumo:
The demand for analytical methods suitable for accurate and reproducible determination of drug enantiomers has increased significantly in the last years. High-performance liquid chromatography (HPLC) using chiral stationary phases and capillary electrophoresis (CE) are the most important techniques used for this purpose. In this paper, the fundamental aspects of chiral separations using both techniques are presented. Some important aspects for the development of enantioselective methods, particularly for the analysis of drugs and metabolites in biological samples, are also discussed.