913 resultados para Building energy-efficiency
Resumo:
According to law number 12.715/2012, Brazilian government instituted guidelines for a program named Inovar-Auto. In this context, energy efficiency is a survival requirement for Brazilian automotive industry from September 2016. As proposed by law, energy efficiency is not going to be calculated by models only. It is going to be calculated by the whole universe of new vehicles registered. In this scenario, the composition of vehicles sold in market will be a key factor on profits of each automaker. Energy efficiency and its consequences should be taken into consideration in all of its aspects. In this scenario, emerges the following question: which is the efficiency curve of one automaker for long term, allowing them to adequate to rules, keep balancing on investment in technologies, increasing energy efficiency without affecting competitiveness of product lineup? Among several variables to be considered, one can highlight the analysis of manufacturing costs, customer value perception and market share, which characterizes this problem as a multi-criteria decision-making. To tackle the energy efficiency problem required by legislation, this paper proposes a framework of multi-criteria decision-making. The proposed framework combines Delphi group and Analytic Hierarchy Process to identify suitable alternatives for automakers to incorporate in main Brazilian vehicle segments. A forecast model based on artificial neural networks was used to estimate vehicle sales demand to validate expected results. This approach is demonstrated with a real case study using public vehicles sales data of Brazilian automakers and public energy efficiency data.
Resumo:
The Green Deal (GD) was launched in 2013 by the UK Government as a market-led scheme to encourage uptake of energy efficiency measures in the UK and create green sector jobs. The scheme closed in July 2015 after 30 months due to government concerns over low uptake and industry standards but additional factors potentially contributed to its failure such as poor scheme design and lack of understanding of the customer and supply chain journey. We explore the role of key delivery agents of GD services, specifically SMEs, and we use the LoCal-Net project as a case study to examine the use of networks to identify and reduce barriers to SME market engagement. We find that SMEs experienced multiple barriers to interaction with the GD such as lack of access to information, training, and confusion over delivery of the scheme but benefited from interaction with the network to access information, improve understanding of the scheme, increasing networking opportunities and forming new business models and partnerships to reduce risk. The importance of SMEs as delivery agents and their role in the design of market-led schemes such as the GD are discussed with recommendations for improving SME engagement in green sector initiatives.
Resumo:
Public Lightning is an important part of municipality’s nighttime landscape. Lighting can be used to enhance public safety and security while improving the aesthetic appeal of the surrounding properties but with the current global financial crisis, such lighting systems must also be sustainable. Most climate policy efforts focus on the state and international level, however national governments won’t be able to meet their international commitments without local action. In Portugal, the Public Lighting is responsible for 3% of energy consumption. The problem is that the trend is to increase (about 4-5% per year) which represents very high costs for the municipal authorities. In terms of numbers are analyzed in this thesis 45 of 278 existent in Continental Portugal what represents only 16,2 % of the counties. This where the local authorities in Portugal that had a Sustainable Energy Action Plan (SEAP) that had been accepted and made available in the Covenant of Mayors website until the end of year 2013. It is important that the Covenant of Mayors will increase the local authorities awareness for energy efficiency and especially to public lighting because there is still a long way to go in terms of energy consumption reduction. In future works it would be interesting to see the payback of the EolGreen post in a real scenario due to lack of energy consumption from the grid it would allow to have a pretty high initial investment even with the maintenance that those technologies need.
Resumo:
PEDRINI, Aldomar; WESTPHAL, F. S.; LAMBERT, R.. A methodology for building energy modelling and calibration in warm climates. Building And Environment, Australia, n. 37, p.903-912, 2002. Disponível em:
Resumo:
Common building energy modeling approaches do not account for the influence of surrounding neighborhood on the energy consumption patterns. This thesis develops a framework to quantify the neighborhood impact on a building energy consumption based on the local wind flow. The airflow in the neighborhood is predicted using Computational Fluid Dynamics (CFD) in eight principal wind directions. The developed framework in this study benefits from wind multipliers to adjust the wind velocity encountering the target building. The input weather data transfers the adjusted wind velocities to the building energy model. In a case study, the CFD method is validated by comparing with on-site temperature measurements, and the building energy model is calibrated using utilities data. A comparison between using the adjusted and original weather data shows that the building energy consumption and air system heat gain decreased by 5% and 37%, respectively, while the cooling gain increased by 4% annually.
Resumo:
This article reports country differences in the consumer’s most considered characteristics when choosing electrical appliances, including but not restricted to the energy efficiency aspect. A survey was performed to store customers from 7 countries: the United Kingdom; Germany; Portugal; Greece; Poland; Spain; Italy. Results showed consistency between countries in the top three characteristics considered: cost; quality; and a balance between price and quality. Differences were found for reported environmental attitudes and behaviours, purchase motives, and store employees evaluation. The results may support national policies and store level energy efficiency interventions. Specifically, they can provide input for store employee’s training, in persuading customers towards the purchase of energy efficient appliances.
Resumo:
427 p.
Resumo:
At the present there is a high pressure toward the improvement of all production processes. Those improvements can target distinct factors along the production chain. In particular, and due to recent tight energy efficiency policies, those that involve energy efficiency. As can be expected, agricultural processes are not immune to this tendency. Even more when dealing with indoor productions. In this context, this work presents an innovative system that aims to improve the energy efficiency of a trees growing platform. This improvement in energy consumption is accomplished by replacing an electric heating system by one based on thermodynamic panels. The assessment of the heating fluid caudal and its temperature was experimentally obtained by means of a custom made scaled prototype whose actuators status are commanded by a Fuzzy-based controller. The obtained results suggest that the change in the heating paradigm will lead to overall savings that can easily reach 60% on the energy bill.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Hardware vendors make an important effort creating low-power CPUs that keep battery duration and durability above acceptable levels. In order to achieve this goal and provide good performance-energy for a wide variety of applications, ARM designed the big.LITTLE architecture. This heterogeneous multi-core architecture features two different types of cores: big cores oriented to performance and little cores, slower and aimed to save energy consumption. As all the cores have access to the same memory, multi-threaded applications must resort to some mutual exclusion mechanism to coordinate the access to shared data by the concurrent threads. Transactional Memory (TM) represents an optimistic approach for shared-memory synchronization. To take full advantage of the features offered by software TM, but also benefit from the characteristics of the heterogeneous big.LITTLE architectures, our focus is to propose TM solutions that take into account the power/performance requirements of the application and what it is offered by the architecture. In order to understand the current state-of-the-art and obtain useful information for future power-aware software TM solutions, we have performed an analysis of a popular TM library running on top of an ARM big.LITTLE processor. Experiments show, in general, better scalability for the LITTLE cores for most of the applications except for one, which requires the computing performance that the big cores offer.
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.
Resumo:
TESLA project (Transfering Energy Save Laid on Agroindustry) financed by the European Commission, had the main goals of evaluating the energy consumption and to identify the best available practices to improve energy efficiency in key agro-food sectors, such as the olive oil mills. A general analysis of energy consumptions allowed identifying the partition between electrical and thermal energy (approximately 50%) and the production processes responsible for the higher energy consumptions, as being the in the mill and paste preparation and the phases separation. Some measures for reducing energy waste and for improving energy efficiency were identified and the impact was evaluated by using the TESLA tool developed by Circe and available at the TESLA website.
Resumo:
Buildings are responsible for more than 40% of the energy consumption and greenhouse gas emissions. Thus, increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials could constitute the most effective way of reducing heat losses in buildings by minimising heat energy needs. These materials have a thermal conductivity factor, k (W/m.K) lower than 0.065 while other insulation materials such as aerated concrete can go up to 0.11. Current insulation materials are associated with negative impacts in terms of toxicity. Polystyrene, for example contains anti-oxidant additives and ignition retardants. In addition, its production involves the generation of benzene and chlorofluorocarbons. Polyurethane is obtained from isocyanates, which are widely known for their tragic association with the Bhopal disaster. Besides current insulation materials releases toxic fumes when subjected to fire. This paper presents experimental results on one-part geopolymers. It also includes global warming potential assessment and cost analysis. The results show that only the use of aluminium powder allows the production mixtures with a high compressive strength however its high cost means they are commercially useless when facing the competition of commercial cellular concrete. The results also show that one-part geopolymer mixtures based on 26%OPC +58.3%FA +8%CS +7.7%CH and 3.5% hydrogen peroxide constitute a promising cost efficient (67 euro/m3), thermal insulation solution for floor heating systems with low global warming potential of 443 KgCO2eq/m3.