907 resultados para Brain -- Nervous system
Resumo:
Our studies have focused on the effect of L-NG-nitroarginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), and L-arginine, the substrate of NOS, on salivary secretion induced by the administration of pilocarpine into the lateral cerebral ventricle (LV) of rats. The present study has also investigated the role of the beta-adrenergic agonists and antagonist injected into LV on the salivary secretion elicited by the injection of pilocarpine into LV. Male Holtzmann rats with a stainless-steel cannula implanted into the LV were used. The amount of salivary secretion was studied over a 7-min period after injection of pilocarpine, isoproterenol, propranolol, salbutamol, salmeterol, L-NAME and L-arginine. The injection of pilocarpine (10, 20, 40, 80 and 160 mug/mul) into LV produced a dose-dependent increase in salivary secretion. The injection of L-NAME (40 mug/mul) into LV alone produced an increase in salivary secretion. The injection of L-NAME into LV previous to the injection of pilocarpine produced an increase in salivary secretion. L-Arginine (30 mug/mul) injected alone into LV produced no change in salivary secretion. L-Arginine injected into LV attenuated pilocarpine-induced salivary secretion. The isoproterenol (40 nmol/mul) injected into LV increased into LV increased the salivary secretion. When injected previous to pilocarpine at a dose of 20 and 40 mug/mul, isoproterenol produced and additive effect on pilocarpine-induced salivary secretion. The 40-nmol/mul dose of propranolol injected alone or previous to pilocarpine into LV attenuated the pilocarpine-induced salivary secretion. The injection of salbutamol (40 nmol/mul), a specific beta-2 agonist, injected alone into LV produced no change in salivary secretion and when injected previous to pilocarpine produced and increase in salivary secretion. The 40-nmol/mul dose of salmeterol, a long-acting beta-2 agonist, injected into LV alone or previous to pilocarpine produced no change in salivary secretion. The results have shown that central injections of L-NAME and L-arginine interfere with the salivary secretion, which implies that might participate in pilocarpine-induced salivary secretion. The interaction between cholinergic and beta-adrenergic receptors of the central nervous system (CNS) for the control of salivary secretion can also be postulated. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Ocimum gratissimum L. (Lamiaceae) and other species of the same genus are used as medicines to treat central nervous system (CNS) diseases, commonly encountered in warm regions of the world. The chemical composition of Ocimum gratissimum essential oil varies according to their chemotypes: timol, eugenol or geraniol. In this study, the essential oil type eugenol was extracted by hydrodistillation in each of the four seasons of the year. Activity upon CNS was evaluated in the open-field and rota-rod tests; sleeping time induced by sodium pentobarbital (PBS, 40 mg/kg, intraperitoneally, i.p.) and anticonvulsant activity against seizures induced by both pentylenetetrazole (PTZ; 85 mg/kg, s.c.) and maximal electroshock (MES, 50 mA, 0.11 s) were determined. Essential oils obtained in each season were effective in increasing the sleeping duration and a preparation obtained in Spring was able to protect animals against tonic seizures induced by electroshock. In each season, eugenol and 1,8-cineole were the most abundant compounds, and in Spring the essential oil presented the greatest relative percentage of sesquiterpenes, suggesting that these compounds could explain the differences observed in the biological activity in essential oils obtained in different seasons of the year. (c) 2005 Elsevier B.V.. All rights reserved.
Central nervous system of Rhipicephalus sanguineus ticks (Acari: Ixodidae): an ultrastructural study
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effect in rats of an anteroventral third ventricle (AV3V) electrolytic lesion on salivary secretion induced by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of a cholinergic agonist (pilocarpine) was investigated. Sham- or AV3V-lesioned rats anesthetized with urethane and with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The amount of salivary secretion was studied over a seven-minute period after i.c.v. or i.p. injection of pilocarpine. In sham-operated rats, i.p. injection of pilocarpine (1 mg/kg b.w.) (after 6 h, 2, 7, and 15 days) produced salivary secretion (486 +/- 21, 778 +/- 85, 630 +/- 50, and 560 +/- 55 mg/7 min, respectively). This effect was reduced 6 h, 2, and 7 days after an AV3V lesion (142 +/- 22, 113 +/- 32, and 290 +/- 62 mg/7 min, respectively), but not 15 days after an AV3V lesion (516 +/- 19 mg/7 min). I.c.v. injection of pilocarpine (120 mug in 1 muL), in sham-operated rats after 6 h, 2, 7, and 15 days also produced salivary secretion (443 +/- 20, 417 +/- 81, 496 +/- 14, and 427 +/- 47 mg/7 min, respectively). The effects of i.c.v. pilocarpine were also reduced 6 h, 2, and 7 days after an AV3V lesion (143 +/- 19, 273 +/- 14, and 322 +/- 17 mg/7 min, respectively), but not after 15 days (450 +/- 28 mg/7 min). The results demonstrate that the central nervous system, and particularly the AV3V region, is important for the effect of pilocarpine on salivary secretion in rats. Moreover, they suggest that activation of central pathways may play an important part in the salivary secretion to peripheral pilocarpine in rats.
Resumo:
Thirty-eight tumors (five grade I-II astrocytomas, three grade III astrocytomas, four glioblastomas, one oligodendroglioma, four ependymomas, one pineocytoma, three medulloblastomas, four acoustic nerve neurinomas, one intraspinal neurinoma, one neurofibroma, 10 meningiomas, and one craniopharyngioma) and three benign lesions of the nervous system were evaluated cytogenetically after in vitro culture. Sex chromosome loss was detected in 56% of the cases (-X in 13 of the 25 female patients and -Y in nine of the 16 male patients). The objective of the present report was to study the role of this abnormality in cells of the nervous system.
Resumo:
1. Water intake induced by injection of 0.2 M-NaCl into the lateral preoptic area was increased by the injection of angiotensin II into the subfornical organ of rats. The injection of hypertonic saline solution into the subfornical organ increased water intake. However, the increase was lower than when the solution was injected into the lateral preoptic area. The injection of 4 μg angiotensin II into the lateral preoptic area further augmented this effect. 2. Injection of angiotensin II into the subfornical organ caused a rise in blood pressure which preceded the thirst-inducing effect. The injection of 0.2 M NaCl into the subfornical organ caused no changes in blood pressure, whereas the injection of angiotensin II into the lateral preoptic area caused some increase. 3. Dehydration of the lateral preoptic area by means of 0.2 M NaCl in combination with intravenous infusion of angiotensin II caused a summation of effects in terms of the water intake, without changing cardiovascular alterations induced by the infusion of angiotensin II. A summation of effects in the water intake, but not in blood pressure, was also observed when 0.5 M NaCl was infused intravenously in combination with the injection of angiotensin II into the subfornical organ and into the lateral preoptic area. 4. The results indicate that there are interactions between the subfornical organ and lateral preoptic area in the regulation of cardiovascular and thirst mechanisms.
Resumo:
We report here two postmortem cases of dogs with intravascular lymphomatosis affecting the central nervous system. Intravascular lymphomatosis is represented by an exclusively intravascular proliferation of neoplastic lymphoid cells. To characterize the origin of the neoplastic cells, we have proceeded with immunohistochemical analysis to identify B and T lymphocytes and endothelial cells. The results showed predominance of cells from the T cell lineage, and no evidence of B cell origin was found. Few cells from one dog also exhibited cytoplasmatic staining for vimentin and Von Willebrand factor. Although in one case some immunophenotype diversity was observed, the massive presence of CD3 positive cells confirmed these neoplasms as intravascular lymphomatosis of T cell origin.
Resumo:
Studies on the molecular bases of the neurotoxic action of acaricides are found in the literature; but there are no studies of this action on the nervous system of ticks at the cellular level. The present study describes the morphological and cytochemical changes in the synganglion of Rhipicephalus sanguineus semi-engorged females exposed to different concentrations of permethrin, a pyrethroid with recognized neurotoxic action. Permethrin induced the degeneration of the synganglion through a process of apoptosis involving autophagy, characterized by the condensation and margination of the chromatin, formation of blebs in the nuclear envelope and fragmentation of the nucleus, loss of shape of neural cells and integrity of cellular membrane, cytoplasmic shrinkage, and lower levels of acid phosphatase in the nervous tissue as the concentration of permethrin increased. This study provided further evidence of the neurotoxic action of permethrin, which impairs the metabolism of R. sanguineus nervous systems, and consequently the physiology of other systems, dependent on the neural control. These results provide cytochemical and histological confirmation of the neurotoxic action of permethrin, previously inferred from molecular and tick behavioral evidence. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)