999 resultados para Bovines - Embryo culture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To determine the effects of melatonin on rat endometrium morphology and embryo implantation. Design: Experimental study. Setting: Federal University of Sao Paulo, Brazil. Animal(s): Forty female rats. Intervention(s): GI: control, GII: sham-operated, GIII: pinealectomized, and GIV: pinealectomized rats that received melatonin during 3 months. The GI, GII, and Gin groups received the vehicle of melatonin (NaCl + ethanol). At the end of the treatment, the animals were killed during the estrous phase; the uterus was removed for morphometric analysis. Urine was collected for 6-sulfatoxymelatonin. Blood was collected for estrogen (E) and progesterone (P) level determinations. In a second experiment, female rats were used to evaluate the endometrial embryo implantation. Main Outcome Measure(s): Endometrial morphology and embryo implantation. Result(s): Gin presented the highest values for endometrial area and thickness index, number of endometrial glands, and eosinophils. The number of vessels of groups I, II, and IV was fewer than that of Gin. The highest number of eosinophils was detected in Gin in comparison to other groups. The implantation rate in Gin was the lowest of all groups. This implantation rate was significantly increased and restored toward normal in GIV. Conclusion(s): Our data suggested that, in nonphotoperiodic animals such as rats, melatonin may positively affect the endometrial morphology and improve embryo implantation.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contents Sex pre-selection of bovine offsprings has commercial relevance for cattle breeders and several methods have been used for embryo sex determination. Polymerase chain reaction (PCR) has proven to be a reliable procedure for accomplishing embryo sexing. To date, most of the PCR-specific primers are derived from the few single-copy Y-chromosome-specific gene sequences already identified in bovines. Their detection demands higher amounts of embryonic genomic material or a nested amplification reaction. In order to circumvent this, limitation we searched for new male-specific sequences potentially useful in embryo sexing using random amplified polymorphic DNA (RAPD) analysis. Random amplified polymorphic DNA (RAPD) assay reproducibility problems can be overcome by its conversion into Sequence Characterized Amplified Region (SCAR) markers. In this work, we describe the identification of two bovine male-specific markers (OPC16(323) and OPF10(1168)) by means of RAPD. These markers were successfully converted into SCARs (OPC16(726) and OPF10(984)) using two pairs of specific primers.Furthermore, inverse PCR (iPCR) methodology was successfully applied to elongate OPC16(323) marker in 159% (from 323 to 837 bp). Both markers are shown to be highly conserved (similarity >= 95%) among bovine zebu and taurine cattle; OPC16(323) is also highly similar to a bubaline Y-chromosome-specific sequence. The primers derived from the two Y-chromosome-specific conserved sequences described in this article showed 100% accuracy when used for identifying male and female bovine genomic DNA, thereby proving their potential usefulness for bovine embryo sexing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the potential effects of short-term exposure to particulate air pollution during follicular phase on clinical, laboratory, and pregnancy outcomes of women undergoing IVF/ET. Retrospective cohort study of 400 first IVF/ET cycles of women exposed to ambient particulate matter during follicular phase. Particulate matter (PM) was categorized into quartiles (Q(1): a parts per thousand currency sign30.48 A mu g/m(3), Q(2): 30.49-42.00 A mu g/m(3), Q(3): 42.01-56.72 A mu g/m(3), and Q(4): > 56.72 A mu g/m(3)). Clinical, laboratory, or treatment variables were not affected by follicular phase PM exposure periods. Women exposed to Q(4) period during the follicular phase of conception cycles had a higher risk of miscarriage (odds ratio, 5.05; 95% confidence interval: 1.04-25.51) when compared to women exposed to Q(1-3) periods. Our results show an association between brief exposure to high levels of ambient PM during the preconceptional period and early pregnancy loss, although no effect of this exposure on clinical, laboratory, and treatment outcomes was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate effects of pre- and/or postnatal exposure to ambient fine particulate matter on fertilization, embryo development, and cell lineage segregation in preimplantation blastocysts using the IVF mouse model. Design: Animal model. Setting: Academic institution. Animal(S): Six-week-old, superovulated mice. Intervention(s): Pre- and postnatal exposure to filtered air (FA-FA), filtered-ambient air (FA-AA), or ambient air (AA-AA) in exposure chambers 24 hours a day for 9 weeks. Main Outcome Measure(S): Gestation length, litter size, sex ratio, ovarian response to superovulation, fertilization rate, embryo development, blastocyst and hatching rates, total cell count, and proportion of cell allocation to inner-cell mass (ICM) and trophectoderm (TE). Result(S): Gestation length, litter size and birth weight, live-birth index, and sex ratio were similar among exposure groups. Ovarian response was not affected by the exposure protocol. A multivariate effect for pre- and/or postnatal exposure to ambient fine particulate matter on IVF, embryo development, and blastocyst differential staining was found. Cell counts in ICM and ICM/TE ratios in blastocysts produced in the FA-FA protocol were significantly higher than in blastocysts produced in the FA-AA and AA-AA protocols. No difference in total cell count was observed among groups. Conclusion(S): Our study suggests that exposure to ambient fine particulate matter may negatively affect female reproductive health by disrupting the lineage specification at the blastocyst stage without interfering in early development of the mouse embryo. (Fertil Steril (R) 2009;92:1725-35. (C) 2009 by American Society for Reproductive Medicine.)

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: