962 resultados para Blowup of semi-linear equations
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a class of functional differential equations subject to perturbations, which vary in time, and we study the exponential stability of solutions of these equations using the theory of generalized ordinary differential equations and Lyapunov functionals. We introduce the concept of variational exponential stability for generalized ordinary differential equations and we develop the theory in this direction by establishing conditions for the trivial solutions of generalized ordinary differential equations to be exponentially stable. Then, we apply the results to get corresponding ones for impulsive functional differential equations. We also present an example of a delay differential equation with Perron integrable right-hand side where we apply our result.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper reports the reconstruction of the contamination history of a large South American industrial coastal area (Santos Estuary, Brazil) using linear alkylbenzenes (LABs). Three sediment cores were dated by (137)Cs Concentrations in surficial layers were comparable to the midrange concentrations reported for coastal sediments worldwide LAB concentrations increased towards the surface. indicating increased waste discharges into the estuary in recent decades. The highest concentration values occurred in the early 1970s, a time of intense industrial activity and marked population growth. The decreased LAB concentration, in the late 1970s was assumed to be the result of the world oil crisis Treatment of industrial effluents, which began in 1984, was represented by decreased LAB levels Microbial degradation of LABs may be more intense in the industrial area sediments. The results show that industrial and domestic waste discharges are a historical problem in the area. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Inthispaperwestudygermsofpolynomialsformedbytheproductofsemi-weighted homogeneous polynomials of the same type, which we call semi-weighted homogeneous arrangements. It is shown how the L numbers of such polynomials are computed using only their weights and degree of homogeneity. A key point of the main theorem is to find the number called polar ratio of this polynomial class. An important consequence is the description of the Euler characteristic of the Milnor fibre of such arrangements only depending on their weights and degree of homogeneity. The constancy of the L numbers in families formed by such arrangements is shown, with the deformed terms having weighted degree greater than the weighted degree of the initial germ. Moreover, using the results of Massey applied to families of function germs, we obtain the constancy of the homology of the Milnor fibre in this family of semi-weighted homogeneous arrangements.
Resumo:
USE OF THE LINEAR LIGHT SENSOR ILX554 IN OPTICAL SPECTROSCOPY. This technical note describes the construction of a low-cost optical detector. This device is composed by a high-sensitive linear light sensor (model ILX554) and a microcontroller. The performance or the detector was demonstrated by the detection of emission and Raman spectra of the several atomic systems and the results reproduce those found in the literature.
Resumo:
In this paper we introduce a new class of abstract integral equations which enables us to study in a unified manner several different types of differential equations. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Despite the fact that the integral form of the equations of classical electrodynamics is well known, the same is not true for non-Abelian gauge theories. The aim of the present paper is threefold. First, we present the integral form of the classical Yang-Mills equations in the presence of sources and then use it to solve the long-standing problem of constructing conserved charges, for any field configuration, which are invariant under general gauge transformations and not only under transformations that go to a constant at spatial infinity. The construction is based on concepts in loop spaces and on a generalization of the non-Abelian Stokes theorem for two-form connections. The third goal of the paper is to present the integral form of the self-dual Yang-Mills equations and calculate the conserved charges associated with them. The charges are explicitly evaluated for the cases of monopoles, dyons, instantons and merons, and we show that in many cases those charges must be quantized. Our results are important in the understanding of global properties of non-Abelian gauge theories.
Resumo:
Context. To date, the CoRoT space mission has produced more than 124 471 light curves. Classifying these curves in terms of unambiguous variab ility behavior is mandatory for obtaining an unbi ased statistical view on th eir controlling root-causes. Aims. The present study provides an overview of semi-sinusoidal light curves observed by the CoRoT exo-field CCDs. Methods. We selected a sample of 4206 light curves presenting well-defined semi-si nusoidal signatures. Th e variability periods were computed based on Lomb-Scargle periodograms, harmonic fits, and visual inspection. Results. Color–period diagrams for the present sample show the trend of an increase of the variability periods as long as the stars evolve. This evolutionary behavior is also noticed when comparing the period distribution in the Galactic center and anti-center directions. These aspect s indicate a compatibility with stellar rotation, although more inform ation is needed to confirm their root- causes. Considering this possi bility, we identified a subset of th ree Sun-like candidates by their photometric peri od. Finally, the variability period versus color diagr am behavior was found to be highly depe ndent on the reddening correction.
Resumo:
This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.
Resumo:
Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.
Resumo:
Wir haben die linearen und nichtlinearen optischen Eigenschaften von dünnen Schichten und planaren Wellenleitern aus mehreren konjugierten Polymeren (MEH-PPV und P3AT) und Polymeren mit -Elektronen Systemen in der Seitenkette (PVK und PS) untersucht und verglichen. PVK und PS haben relativ kleine Werte des nichtlinearen Brechungsindex n2 bei 532 nm, nämlich (1,2 ± 0,5)10-14 cm2/W und (2,6 ± 0,5) 10-14 cm2/W.rnWir haben die linearen optischen Konstanten von mehreren P3ATs untersucht, insbesondere den Einfluss der Regioregularität und Kettenlänge der Alkylsubstituenten. Wir haben das am besten geeignete Polymere für Wellenleiter Anwendungen identifiziert, welches P3BT-ra genannt ist. Wir haben die linearen optischen Eigenschaften dünner Schichten des P3BT-ra untersucht, die mit Spincoating aus verschiedenen Lösungsmitteln mit unterschiedlichen Siedetemperaturen präparieret wurden. Wir haben festgestellt, dass P3BT-ra Filme aus Toluol-Lösungen die am besten geeigneten Wellenleiter für die intensitätsabhängigen Prismen-Kopplungs Experimente sind, weil diese geringe Wellenleiterdämpfungsverluste bei = 1064 nm haben. rnWir haben die Dispersionen des Wellenleiterdämfungsverlustes gw, des nichtlinearen Brechungsindex n2 und des nichtlinearen Absorptionskoeffizienten 2 von Wellenleitern aus P3BT-ra im Bereich von 700 - 1500 nm gemessen. Wir haben große Werte des nichtlinearen Brechungsindex bis 1,5x10-13 cm2/W bei 1150 nm beobachtet. Wir haben gefunden, dass die Gütenkriterien (“figures of merit“) für rein optische Schalter im Wellenlängebereich 1050 - 1200 nm erfüllt sind. Dieser Bereich entspricht dem niederenergetischen Ausläufer der Zwei-Photonen-Absorption. Die Gütekriterien von P3BT-ra gehören zu den besten der bisher bekannten Werte von konjugierten Polymeren.rnWir haben gefunden, dass P3BT-ra ein vielversprechender Kandidat für integriert-optische Schalter ist, weil es eine gute Kombination aus großer Nichtlinearität dritter Ordnung, geringen Wellenleiterdämpfungverlusten und ausreichender Photostabilität zeigt. rnWir haben einen Vergleich der gemessenen Dispersion von gw, n2 und 2 mit der Theorie durchgeführt. Durch Kurvenanpassung der Dispersion von gw haben wir gefunden, dass Rayleigh-Streuung der dominierende Dämpfungsmechanismus in MEH-PPV und P3BT-ra Wellenleitern ist. Ein quantenmechanischer Ansatz wurde zur Berechnung der nichtlinearen Suszeptibilität dritter Ordnung (3) verwendet, um die gemessenen Spektren von n2 und 2 von P3BT-ra und MEH-PPV zu simulieren. Dies kann erklären, dass sättigbare Absorption und Zwei-Photonen Absorption die hauptsächlichen Effekte sind, welche die Dispersion von n2 und 2 verursachen. rn
Resumo:
The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.