977 resultados para Binomial theorem.
Resumo:
Some recent results of Khukhro and Makarenko on the existence of characteristic X-subgroups of finite index in a group G, for certain varieties X, are used to obtain generalisations of some well-known results in the literature pertaining to groups G, in which all proper subgroups satisfy some condition or other related to the property 'soluble-by-finite'. In addition, a partial generalisation is obtained for the aforementioned results on the existence of characteristic subgroups.
Resumo:
Boston Harbor has had a history of poor water quality, including contamination by enteric pathogens. We conduct a statistical analysis of data collected by the Massachusetts Water Resources Authority (MWRA) between 1996 and 2002 to evaluate the effects of court-mandated improvements in sewage treatment. Motivated by the ineffectiveness of standard Poisson mixture models and their zero-inflated counterparts, we propose a new negative binomial model for time series of Enterococcus counts in Boston Harbor, where nonstationarity and autocorrelation are modeled using a nonparametric smooth function of time in the predictor. Without further restrictions, this function is not identifiable in the presence of time-dependent covariates; consequently we use a basis orthogonal to the space spanned by the covariates and use penalized quasi-likelihood (PQL) for estimation. We conclude that Enterococcus counts were greatly reduced near the Nut Island Treatment Plant (NITP) outfalls following the transfer of wastewaters from NITP to the Deer Island Treatment Plant (DITP) and that the transfer of wastewaters from Boston Harbor to the offshore diffusers in Massachusetts Bay reduced the Enterococcus counts near the DITP outfalls.
Resumo:
We present a state-of-the-art application of smoothing for dependent bivariate binomial spatial data to Loa loa prevalence mapping in West Africa. This application is special because it starts with the non-spatial calibration of survey instruments, continues with the spatial model building and assessment and ends with robust, tested software that will be used by the field scientists of the World Health Organization for online prevalence map updating. From a statistical perspective several important methodological issues were addressed: (a) building spatial models that are complex enough to capture the structure of the data but remain computationally usable; (b)reducing the computational burden in the handling of very large covariate data sets; (c) devising methods for comparing spatial prediction methods for a given exceedance policy threshold.
Resumo:
In 1970 Clark Benson published a theorem in the Journal of Algebra stating a congruence for generalized quadrangles. Since then this theorem has been expanded to other specific geometries. In this thesis the theorem for partial geometries is extended to develop new divisibility conditions for the existence of a partial geometry in Chapter 2. Then in Chapter 3 the theorem is applied to higher dimensional arcs resulting in parameter restrictions on geometries derived from these structures. In Chapter 4 we look at extending previous work with partial geometries with α = 2 to uncover potential partial geometries with higher values of α. Finally the theorem is extended to strongly regular graphs in Chapter 5. In addition we obtain expressions for the multiplicities of the eigenvalues of matrices related to the adjacency matrices of these graphs. Finally, a four lesson high school level enrichment unit is included to provide students at this level with an introduction to partial geometries, strongly regular graphs, and an opportunity to develop proof skills in this new context.
Resumo:
This project develops K(bin), a relatively simple, binomial based statistic for assessing interrater agreement in which expected agreement is calculated a priori from the number of raters involved in the study and number of categories on the rating tool. The statistic is logical in interpretation, easily calculated, stable for small sample sizes, and has application over a wide range of possible combinations from the simplest case of two raters using a binomial scale to multiple raters using a multiple level scale.^ Tables of expected agreement values and tables of critical values for K(bin) which include power to detect three levels of the population parameter K for n from 2 to 30 and observed agreement $\ge$.70 calculated at alpha =.05,.025, and.01 are included.^ An example is also included which describes the use of the tables for planning and evaluating an interrater reliability study using the statistic, K(bin). ^
Resumo:
The aim of this note is to characterize all pairs of sufficiently smooth functions for which the mean value in the Cauchy mean value theorem is taken at a point which has a well-determined position in the interval. As an application of this result, a partial answer is given to a question posed by Sahoo and Riedel.
Resumo:
The Hasse-Minkowski theorem concerns the classification of quadratic forms over global fields (i.e., finite extensions of Q and rational function fields with a finite constant field). Hasse proved the theorem over the rational numbers in his Ph.D. thesis in 1921. He extended the research of his thesis to quadratic forms over all number fields in 1924. Historically, the Hasse-Minkowski theorem was the first notable application of p-adic fields that caught the attention of a wide mathematical audience. The goal of this thesis is to discuss the Hasse-Minkowski theorem over the rational numbers and over the rational function fields with a finite constant field of odd characteristic. Our treatments of quadratic forms and local fields, though, are more general than what is strictly necessary for our proofs of the Hasse-Minkowski theorem over Q and its analogue over rational function fields (of odd characteristic). Our discussion concludes with some applications of the Hasse-Minkowski theorem.
Resumo:
We analyze a model of 'postelection politics', in which (unlike in the more common Downsian models of 'preelection politics') politicians cannot make binding commitments prior to elections. The game begins with an incumbent politician in office, and voters adopt reelection strategies that are contingent on the policies implemented by the incumbent. We generalize previous models of this type by introducing heterogeneity in voters' ideological preferences, and analyze how voters' reelection strategies constrain the policies chosen by a rent-maximizing incumbent. We first show that virtually any policy (and any feasible level of rent for the incumbent) can be sustained in a Nash equilibrium. Then, we derive a 'median voter theorem': the ideal point of the median voter, and the minimum feasible level of rent, are the unique outcomes in any strong Nash equilibrium. We then introduce alternative refinements that are less restrictive. In particular, Ideologically Loyal Coalition-proof equilibrium also leads uniquely to the median outcome.
Resumo:
DeMoivre's theorem is of great utility in some parts of physical chemistry and is re-introduced here.
Resumo:
A one dimensional presentation of Ehrenfest's theorem is presented.