933 resultados para Bayesian hierarchical linear model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prestes, J, Frollini, AB, De Lima, C, Donatto, FF, Foschini, D, de Marqueti, RC, Figueira Jr, A, and Fleck, SJ. Comparison between linear and daily undulating periodized resistance training to increase strength. J Strength Cond Res 23(9): 2437-2442, 2009-To determine the most effective periodization model for strength and hypertrophy is an important step for strength and conditioning professionals. The aim of this study was to compare the effects of linear (LP) and daily undulating periodized (DUP) resistance training on body composition and maximal strength levels. Forty men aged 21.5 +/- 8.3 and with a minimum 1-year strength training experience were assigned to an LP (n = 20) or DUP group (n = 20). Subjects were tested for maximal strength in bench press, leg press 45 degrees, and arm curl (1 repetition maximum [RM]) at baseline (T1), after 8 weeks (T2), and after 12 weeks of training (T3). Increases of 18.2 and 25.08% in bench press 1 RM were observed for LP and DUP groups in T3 compared with T1, respectively (p <= 0.05). In leg press 45 degrees, LP group exhibited an increase of 24.71% and DUP of 40.61% at T3 compared with T1. Additionally, DUP showed an increase of 12.23% at T2 compared with T1 and 25.48% at T3 compared with T2. For the arm curl exercise, LP group increased 14.15% and DUP 23.53% at T3 when compared with T1. An increase of 20% was also found at T2 when compared with T1, for DUP. Although the DUP group increased strength the most in all exercises, no statistical differences were found between groups. In conclusion, undulating periodized strength training induced higher increases in maximal strength than the linear model in strength-trained men. For maximizing strength increases, daily intensity and volume variations were more effective than weekly variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed linear models are commonly used in repeated measures studies. They account for the dependence amongst observations obtained from the same experimental unit. Often, the number of observations is small, and it is thus important to use inference strategies that incorporate small sample corrections. In this paper, we develop modified versions of the likelihood ratio test for fixed effects inference in mixed linear models. In particular, we derive a Bartlett correction to such a test, and also to a test obtained from a modified profile likelihood function. Our results generalize those in [Zucker, D.M., Lieberman, O., Manor, O., 2000. Improved small sample inference in the mixed linear model: Bartlett correction and adjusted likelihood. Journal of the Royal Statistical Society B, 62,827-838] by allowing the parameter of interest to be vector-valued. Additionally, our Bartlett corrections allow for random effects nonlinear covariance matrix structure. We report simulation results which show that the proposed tests display superior finite sample behavior relative to the standard likelihood ratio test. An application is also presented and discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecting both the majors genes that control the phenotypic mean and those controlling phenotypic variance has been raised in quantitative trait loci analysis. In order to mapping both kinds of genes, we applied the idea of the classic Haley-Knott regression to double generalized linear models. We performed both kinds of quantitative trait loci detection for a Red Jungle Fowl x White Leghorn F2 intercross using double generalized linear models. It is shown that double generalized linear model is a proper and efficient approach for localizing variance-controlling genes. We compared two models with or without fixed sex effect and prefer including the sex effect in order to reduce the residual variances. We found that different genes might take effect on the body weight at different time as the chicken grows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision.  Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes.  The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. RESULTS: Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. CONCLUSIONS: Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro-environmental changes (diet, climatic region, etc.) may make genetic heterogeneity of variance a less stable trait over time and space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the techniques of likelihood prediction for the generalized linear mixed models. Methods of likelihood prediction is explained through a series of examples; from a classical one to more complicated ones. The examples show, in simple cases, that the likelihood prediction (LP) coincides with already known best frequentist practice such as the best linear unbiased predictor. The paper outlines a way to deal with the covariate uncertainty while producing predictive inference. Using a Poisson error-in-variable generalized linear model, it has been shown that in complicated cases LP produces better results than already know methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper has two original contributions. First, we show that the present value model (PVM hereafter), which has a wide application in macroeconomics and fi nance, entails common cyclical feature restrictions in the dynamics of the vector error-correction representation (Vahid and Engle, 1993); something that has been already investigated in that VECM context by Johansen and Swensen (1999, 2011) but has not been discussed before with this new emphasis. We also provide the present value reduced rank constraints to be tested within the log-linear model. Our second contribution relates to forecasting time series that are subject to those long and short-run reduced rank restrictions. The reason why appropriate common cyclical feature restrictions might improve forecasting is because it finds natural exclusion restrictions preventing the estimation of useless parameters, which would otherwise contribute to the increase of forecast variance with no expected reduction in bias. We applied the techniques discussed in this paper to data known to be subject to present value restrictions, i.e. the online series maintained and up-dated by Shiller. We focus on three different data sets. The fi rst includes the levels of interest rates with long and short maturities, the second includes the level of real price and dividend for the S&P composite index, and the third includes the logarithmic transformation of prices and dividends. Our exhaustive investigation of several different multivariate models reveals that better forecasts can be achieved when restrictions are applied to them. Moreover, imposing short-run restrictions produce forecast winners 70% of the time for target variables of PVMs and 63.33% of the time when all variables in the system are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider multistage stochastic linear optimization problems combining joint dynamic probabilistic constraints with hard constraints. We develop a method for projecting decision rules onto hard constraints of wait-and-see type. We establish the relation between the original (in nite dimensional) problem and approximating problems working with projections from di erent subclasses of decision policies. Considering the subclass of linear decision rules and a generalized linear model for the underlying stochastic process with noises that are Gaussian or truncated Gaussian, we show that the value and gradient of the objective and constraint functions of the approximating problems can be computed analytically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo identificou a relação da aglomeração de firmas de uma mesma atividade econômica na taxa de crescimento do emprego local. Dados das firmas industriais do Estado de São Paulo constantes da Relação Anual de Informações Sociais [RAIS] nos anos de 1996 a 2005 foram coletados. Foram analisadas 263.020 observações de nível de emprego de 26.231 combinações de município-CNAE e 296 diferentes atividades. Os critérios de Puga (2003) e Suzigan, Furtado, Garcia, Sampaio (2003) foram usados para identificar as aglomerações. Uma análise de curva de crescimento, usando-se um modelo multinível, foi desenvolvida no software Hierarchical Linear Models [HLM]. Os resultados evidenciam que existe uma relação positiva entre aglomeração de firmas de uma mesma atividade econômica e o crescimento de emprego. Considerando as externalidades previstas pelo fato de as empresas estarem localizadas em uma mesma região, pode-se sugerir que, em termos comparativos, firmas de uma mesma atividade econômica, localizadas em aglomeração, podem, perceber crescimento maior que suas concorrentes localizadas fora de um aglomerado. Este resultado é relevante, tanto para a empresa individual, como para o estabelecimento de políticas públicas que apóiam o desenvolvimento regional, no nível do município. As evidências confirmam estudos anteriores de caso, permitindo dar mais robustez à teoria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objetivou-se verificar a possibilidade de utilização da prenhez de novilhas aos 16 meses (Pr16) como critério de seleção e as possíveis associações genéticas entre prenhez em novilhas aos 16 meses e o peso à desmama (PD) e o ganho de peso médio da desmama ao sobreano (GP). Foram realizadas análises uni e bicaracterísticas para estimação dos componentes de co-variância, empregando-se um modelo animal linear para peso à desmama e ganho de peso da desmama ao sobreano e não-linear para Pr16. A estimação dos componentes de variância e da predição dos valores genéticos dos animais foi realizada por Inferência Bayesiana. Distribuições flat foram utilizadas para todos os componentes de co-variância. As estimativas de herdabilidade direta para Pr16, PD e GP foram 0,50; 0,24 e 0,15, respectivamente, e a estimativa de herdabilidade materna para o PD, de 0,07. As correlações genéticas foram -0,25 e 0,09 entre Pr16, PD e GP, respectivamente, e a correlação genética entre Pr16 e o efeito genético materno do PD, de 0,29. A herdabilidade da prenhez aos 16 meses indica que essa característica pode ser utilizada como critério de seleção. As correlações genéticas estimadas indicam que a seleção por animais mais pesados à desmama, a longo prazo, pode diminuir a ocorrência de prenhez aos 16 meses de idade. Além disso, a seleção para maior habilidade materna favorece a seleção de animais mais precoces. No entanto, a seleção para ganho de peso da desmama ao sobreano não leva a mudanças genéticas na precocidade sexual em fêmeas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Were estimate (co)variance and genetic associations between conformation, finishing precocity and muscling visual scores measured at weaning (SCW, SFW and SMW, respectively) and yearling (SCY. SFY and SMY, respectively) with mature weight (MW) in Nelore cows, in order to predict the possible changes that inclusion of visual scores in beef cattle selection indices would bring to female mature weight. The data set contained records of 36,757 females, born between 1993 and 2006, belonging to the Jacarezinho cattle raising farm. (Co)variance components were estimated by bivariate animal models using Bayesian inference method through Gibbs sampling, assuming a linear model for MW and a nonlinear (threshold) model for conformation, finishing precocity and muscling visual scores. The first 10,000 rounds were considered as the burn-in period and discarded. The posterior means of direct heritability distributions were: 0.16 +/- 0.02 (SCW); 0.20 +/- 0.02 (SFW); 0.19 +/- 0.02 (SMW); 0.24 +/- 0.02 (SCY); 0.31 +/- 0.02 (SFY); 0.32 +/- 0.02 (SMY) and 0.46 +/- 0.04 (MW). Estimates of genetic correlations between visual scores and MW were positive and moderate, ranging from 0.27 +/- 0.06 to 0.36 +/- 0.04. Visual scores and MW should respond favorably to direct selection. Mature weight can be used in Nelore breeding programs designed to monitor the cows' size. Selection of animals with higher conformation, finishing precocity and muscling scores, especially at yearling, should promote an increase in cows' mature weight. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)