985 resultados para BIOMEMBRANE-LIKE FILMS
Resumo:
Growth of MCM-22 zeolite films on glass substrates was studied with the focus on the understanding of the unusual vertical crystal orientation. The films formed were characterized by scanning electron microscopy and X-ray diffraction. Separate thin disk-like MCM-22 crystals were found vertically oriented at the early crystallization stage. With crystallization the crystals grew into thick disks and finally into continuous films. The vertically oriented MCM-22 thin crystals could be developed from the orientation of columnar MCM-22 nuclei, which have larger parameters in their c-directions than those in a and b directions. The preferred orientation of MCM-22 nuclei and the fast growth rate in the layer direction are responsible for the vertical growth of MCM-22 zeolite films. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Drug dissolution and release characteristics from freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose (CMC) have been investigated to determine the mechanisms of drug release from the two systems. The formulations were prepared by freeze-drying (wafers) or drying in air (films), the hydrated gel of the polymer containing paracetamol as a model soluble drug. Scanning electron microscopy (SEM) was used to examine differences between the physical structure of the wafers and films. Dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 242 nm. The effects of drug loading, polymer content and amount of glycerol (films) on the release characteristics of paracetamol were investigated. The release profiles of paracetamol from the wafers and films were also compared. A digital camera was used to observe the times to complete hydration and dissolution of the wafers containing different amounts of CMC and how that impacts on drug release rates. Both formulations showed sustained type drug release that was modelled by the Korsmeyer–Peppas equation. Changes in the concentration of drug and glycerol (films) did not significantly alter the rate of drug release while increasing polymer content significantly decreased the rate of drug release from both formulations. The results show that the rate of paracetamol release was faster from the wafers than the corresponding films due to differences in their physical structures. The wafers which formed a porous network, hydrated faster than the more dense and continuous, (non-porous) sheet-like structure of the films.
Resumo:
Despite the emerging use of diamond-like carbon (DLC) as a coating for medical devices, few studies have examined the resistance of DLC coatings onto medical polymers to both microbial adherence and encrustation. In this study, amorphous DLC of a range of refractive indexes (1.7-1.9) and thicknesses (100-600 nm) was deposited onto polyurethane, a model polymer, and the resistance to microbial adherence (Escherichia coli; clinical isolate) and encrustation examined using in vitro models. In comparison to the native polymer, the advancing and receding contact angles of DLC-coated polyurethane were lower, indicating greater hydrophilic properties. No relationship was observed between refractive index, thickness, and advancing contact angle, as determined using multiple correlation analysis. The resistances of the various DLC-coated polyurethane films to encrustation and microbial adherence were significantly greater than that to polyurethane; however, there were individual differences between the resistances of the various DLC coatings. In general, increasing the refractive index of the coatings (100 nm thickness) decreased the resistance of the films to both hydroxyapatite and struvite encrustation and to microbial adherence. Films of lower thicknesses (100 and 200 nm; of defined refractive index, 1.8), exhibited the greatest resistance to encrustation and to microbial adherence. In conclusion, this study has uniquely illustrated both the microbial antiadherence properties and resistance to urinary encrustation of DLC-coated polyurethane. The resistances to encrustation and microbial adherence were substantial, and in light of this, it is suggested that DLC coatings of low thickness and refractive index show particular promise as coatings of polymeric medical devices. (c) 2006 Wiley Periodicals, Inc.
Resumo:
We have determined resonant strengths of the KLn (2 less than or equal to n less than or equal to 5) resonances for helium-like Ti ions and (3 less than or equal to n less than or equal to 5) resonances for helium-like Fe ions. The results were obtained using the Tokyo electron beam ion trap. Characteristic X-rays from both dielectronic recombination and radiative recombination were detected as the electron beam energy was scanned through the resonances. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
We have measured electron impact ionization cross-sections of hydrogen-like iron and hydrogen-like molybdenum with an electron beam ion trap. The measurements were performed in the electron energy range between 13.5 and 40 keV for hydrogen-like iron and between 50 and 80 keV for hydrogen-like molybdenum. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Decay dynamics of dielectronic recombination (DR) processes of H-like titanium ions was investigated with an electron beam ion trap. In the DR of H-like ions a K-shell vacancy is available even after the decay of the doubly excited state produced by the recombination. Therefore secondary X-ray emission is possible. An observed X-ray spectrum of DR obtained in the present experiment was well reproduced theoretically by taking into account the secondary X-rays. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A brief overview of work carried out by this group on thick (> 1 mu m), optically clear, robust titania films prepared by a sol-gel method, as well as new results regarding these films, are described. Such films are very active as photocatalysts and able to destroy stearic acid with a quantum yield of 0.32%. The activity of such films is largely unaffected by annealing temperatures below 760 degrees C, but is drastically reduced above this temperature. The drop in photocatalyst activity of such films as a function of annealing temperature appears to correlate well with the change in porosity of the films and suggests that the latter parameter is very important in deciding the overall activity of such films. The importance of porosity in semiconductor photocatalysed cold combustion may be due to the effect it has on access of oxygen to the active sites, rather like the effect the position of a fire grate (open or closed) has on the rate of burning, i.e., hot combustion, that takes place in a fireplace.
Resumo:
PbZrO3/SrRuO3/SrTiO3 (100) epitaxial heterostructures with different thickness of the PbZrO3 (PZO) layer (d(PZO) similar to 5-160 nm) were fabricated by pulsed laser deposition. The ultrathin PZO films (d(PZO) <= 10 nm) were found to possess a rhombohedral structure. On increasing the PZO film thickness, a bulk like orthorhombic phase started forming in the film with d(PZO) similar to 22 nm and became abundant in the thicker films. Nanobeam electron diffraction and room-temperature micro-Raman measurements revealed that the stabilization of the rhombohedral phase of PZO could be attributed to the epitaxial strain accommodated by the heterostructures. Room-temperature polarization vs electric field measurements performed on different samples showed characteristic double hysteresis loops of antiferroelectric materials accompanied by a small remnant polarization for the thick PZO films (dPZO >= 50 nm). The remnant polarization increased by reducing the PZO layer thickness, and a ferroelectric like hysteresis loop was observed for the sample with d(PZO) similar to 22 nm. Local ferroelectric properties measured by piezoresponse force microscopy also exhibited a similar thickness-dependent antiferroelectric-ferroelectric transition. Room-temperature electrical properties observed in the PZO thin films in correlation to their structural characteristics suggested that a ferroelectric rhombohedral phase could be stabilized in thin epitaxial PZO films experiencing large interfacial compressive stress.
Resumo:
There is renewed interest in rare-earth elements and gadolinium in particular for a range of studies in coupling physics and applications. However, it is still apparent that synthesis impacts understanding of the intrinsic magnetic properties of thin gadolinium films, particularly for thicknesses of topicality. We report studies on 50nm thick nanogranular polycrystalline gadolinium thin films on SiO2 wafers that demonstrate single-crystal like behavior. The maximum in-plane saturation magnetization at 4K was found to be 4pMS4K = (2.61±0.26)T with a coercivity of HC4K = (160±5)Oe. A maximum Curie point of TC = (293±2)K was measured via zero-field-cooled - field-cooled magnetization measurements in close agreement with values reported in bulk single crystals. Our measurements revealed magnetic transitions at T1 = (12±2)K (as deposited samples) and T2 = (22±2)K (depositions on heated substrates) possibly arising from the interaction of paramagnetic fcc grains with their ferromagnetic hcp counterparts.
Resumo:
The nonlinear response of a ferroic to an applied field has been studied through the phenomenological Rayleigh Law for over a hundred years. Yet, despite this, the fundamental physical mechanisms at the nanoscale that lead to macroscopic Rayleigh behavior have remained largely elusive, and experimental evidence at small length scales is limited. Here, it is shown using a combination of scanning probe techniques and phase field modeling, that nanoscale piezoelectric response in prototypical Pb(Zr,Ti)O3 films appears to follow a distinctly non-Rayleigh regime. Through statistical analysis, it is found that an averaging of local responses can lead directly to Rayleigh-like behavior of the strain on a macroscale. Phase-field modeling confirms the twist of the ferroelastic interface is key in enhancing piezoelectric response. The studies shed light on the nanoscale origins of nonlinear behavior in disordered ferroics.
Resumo:
Strain-dependent microstructural modifications were observed in epitaxial BiCrO3 (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCOSTO [BCO grown on buffered SrTiO3 (001)] and in-plane compressive strain, BCONGO [BCO grown on buffered NdGaO3 (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCOSTO, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCOSTO films with d = 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCONGO films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ~ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film.
Resumo:
The aim of this paper is to investigate the mechanism of nanoscale fatigue using nano-impact and multiple-loading cycle nanoindentation tests, and compare it to previously reported findings of nanoscale fatigue using integrated stiffness and depth sensing approach. Two different film loading mechanism, loading history and indenter shapes are compared to comprehend the influence of test methodology on the nanoscale fatigue failure mechanisms of DLC film. An amorphous 100 nm thick DLC film was deposited on a 500 μm silicon substrate using sputtering of graphite target in pure argon atmosphere. Nano-impact and multiple-load cycle indentations were performed in the load range of 100 μN to 1000 μN and 0.1 mN to 100 mN, respectively. Both test types were conducted using conical and Berkovich indenters. Results indicate that for the case of conical indenter, the combination of nano-impact and multiple-loading cycle nanoindentation tests provide information on the life and failure mechanism of DLC film, which is comparable to the previously reported findings using the integrated stiffness and depth sensing approach. However, the comparison of results is sensitive to the applied load, loading mechanism, test-type and probe geometry. The loading mechanism and load history is therefore critical which also leads to two different definitions of film failure. The choice of exact test methodology, load and probe geometry should therefore be dictated by the in-service tribological conditions, and where necessary both test methodologies can be used to provide better insights of failure mechanism. Molecular dynamics (MD) simulations of the elastic response of nanoindentation is reported, which indicates that the elastic modulus of the film measured using MD simulation was higher than that experimentally measured. This difference is attributed to the factors related to the presence of material defects, crystal structure, residual stress, indenter geometry and loading/unloading rate differences between the MD and experimental results.
Resumo:
In an effort to achieve large high-field magnetization and increased Curie temperature, polycrystalline DyRh, (DyRh)95X5 and (DyRh)85X15 (X = Fe, Co, Ni, Gd) thin films have been prepared via ultra-high vacuum DC co-sputtering on SiO2 and Si wafers, using Ta as seed and cap material. A body-centred cubic CsCl-like crystal formation (B2 phase) was achieved for DyRh around the equiatomic equilibrium, known from single crystals. The maximum in-plane spontaneous magnetization at T = 4K in fields of μ0H = 5T of was found to be μ0MS,4K = (1.50 ± 0.09)T with a ferromagnetic transition at TC = (5 ± 1)K and a coercivity of μ0HC,4K[D] = (0.010 ± 0.001)T (at T = 4K) for layers deposited on substrates heated to 350°C. Samples prepared at room temperature exhibited poorer texture, smaller grains and less B2-phase content; this did impact on the Curie temperature which was higher compared to those layers with best crystallisation; however the maximal magnetization stayed unaffected. Ferromagnetic coupling was observed in ternary alloys of DyRhGd and DyRhNi with an increased Curie temperature, larger initial permeability, and
high-field magnetization which was best for (DyRh)85Gd15 with μ0MS,4K[Gd15] = (2.10 ± 0.13)T. DyRhFe and DyRhCo showed antiparallel coupling of the spontaneous magnetic moments.
Resumo:
Tese de doutoramento, Estudos de Literatura e de Cultura (Estudos Americanos), Universidade de Lisboa, Faculdade de Letras