969 resultados para Atlanto-axial joint


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate the first biaxial fiber Bragg grating (FBG) accelerometer using axial and transverse forces. An inertial object is fixed at the middle of two FBGs inscribed in one fiber. The difference between the resonant wavelengths of the two FBGs can distinguish the acceleration in the axial direction, while being insensitive in the transverse direction. The average of the resonant wavelengths of the two FBGs can distinguish the acceleration in the transverse direction, while being insensitive in the axial direction. In the experiments, when the transverse direction was vertical, the crest-to-trough sensitivity at 5 Hz and resonant frequency of the average were 0.545 nm/g and 34.42 Hz, respectively. When the axial direction was vertical, those of the difference were 0.0454 nm/g and 900 Hz, respectively. For each FBG, the crest-to-trough sensitivity at 5 Hz and resonant frequency in the transverse/vertical direction were 24 and 1/26 times those in the axial/vertical direction, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Calculating segmental (vertebral level-by-level) torso masses in Adolescent Idiopathic Scoliosis (AIS) patients allows the gravitational loading on the scoliotic spine during relaxed standing to be estimated. METHODS Existing low dose CT scans were used to calculate vertebral level-by-level torso masses and joint moments occurring in the spine for a group of female AIS patients with right-sided thoracic curves. Image processing software, ImageJ (v1.45 NIH USA) was used to reconstruct the torso segments and subsequently measure the torso volume and mass corresponding to each vertebral level. Body segment masses for the head, neck and arms were taken from published anthropometric data. Intervertebral joint moments at each vertebral level were found by summing each of the torso segment masses above the required joint and multiplying it by the perpendicular distance to the centre of the disc. RESULTS AND DISCUSSION Twenty patients were included in this study with a mean age of 15.0±2.7 years and a mean Cobb angle 52±5.9°. The mean total trunk mass, as a percentage of total body mass, was 27.8 (SD 0.5) %. Mean segmental torso mass increased inferiorly from 0.6kg at T1 to 1.5kg at L5. The coronal plane joint moments during relaxed standing were typically 5-7Nm at the apex of the curve (Figure 1), with the highest apex joint of 7Nm. CT scans were performed in the supine position and curve magnitudes are known to be 7-10° smaller than those measured in standing [1]. Therefore joint moments produced by gravity will be greater than those calculated here. CONCLUSIONS Coronal plane joint moments as high as 7Nm can occur during relaxed standing in scoliosis patients, which may help to explain the mechanics of AIS progression. The body mass distributions calculated in this study can be used to estimate joint moments derived using other imaging modalities such as MRI and subsequently determine if a relationship exists between joint moments and progressive vertebral deformity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inductive fault current limiters (FCLs) have several advantages, such as significant current limitation, immediate triggering and relatively low losses. Despite these advantages, saturated core FCLs have not been commercialized due to its large size and associated high costs. A major remaining challenge is to reduce the footprint of the device. In this paper, a solution to reduce the overall footprint is proposed and discussed. In arrangements of windings on a core in reactors such as FCLs, the core is conventionally grounded. The electrical insulation distance between high voltage winding and core can be reduced if the core is left at floating potential. This paper shows the results of the investigation carried out on the insulation of such a coil-core assembly. Two experiments were conducted. In the first, the behavior of the apparatus under high voltage conditions was assessed by performing power frequency and lightning impulse tests. In the second experiment, a low voltage test was conducted during which voltages of different frequencies and pulses with varying rise times were applied. A finite element simulation was also carried out for comparison and further investigation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centres around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the axial performance of two heavily instrumented barrette piles, with and without grouting, socket into gravel layer in Taipei are evaluated based on the results of pile load tests. Both piles are 44 m long with the same dimension of 0.8 by 2.7 m, installed by hydraulic long bucket. One of the piles with toe grouting was socket 6 m into gravel layer and the other pile without toe grouting was socket 3 m into gravel layer. The load versus displacement relationships at pile head, the t-z curves of upper soil layers and of bottom gravel layer, and the tip resistance versus displacement relationships are important concerns and are presented in the paper. The t-z curves interpreted from the measured data along depth are also simulated by the hyperbolic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its ability to represent intricate systems with material nonlinearities as well as irregular loading, boundary, geometrical and material domains, the finite element (FE) method has been recognized as an important computational tool in spinal biomechanics. Current FE models generally account for a single distinct spinal geometry with one set of material properties despite inherently large inter-subject variability. The uncertainty and high variability in tissue material properties, geometry, loading and boundary conditions has cast doubt on the reliability of their predictions and comparability with reported in vitro and in vivo values. A multicenter study was undertaken to compare the results of eight well-established models of the lumbar spine that have been developed, validated and applied for many years. Models were subjected to pure and combined loading modes and their predictions were compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges; their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with previously published median in vitro values. However, the ranges of predictions were larger and exceeded the in vitro ranges, especially for facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with in vivo values. The simulations yielded median facet joint forces of 0 N in flexion, 38 N in extension, 14 N in lateral bending and 60 N in axial rotation that could not be validated due to the paucity of in vivo facet joint forces. In light of high inter-subject variability, one must be cautious when generalizing predictions obtained from one deterministic model. This study demonstrates however that the predictive power increases when FE models are combined together. The median of individual numerical results can hence be used as an improved tool in order to estimate the response of the lumbar spine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Steel hollow sections used in structures such as bridges, buildings and space structures involve different strengthening techniques according to their structural purpose and shape of the structural member. One such technique is external bonding of CFRP sheets to steel tubes. The performance of CFRP strengthening for steel structures has been proven under static loading while limited studies have been conducted on their behaviour under impact loading. In this study, a comprehensive numerical investigation is carried out to evaluate the response of CFRP strengthened steel tubes under dynamic axial impact loading. Impact force, axial deformation impact velocities are studied. The results of the numerical investigations are validated by experimental results. Based on the developed finite element (FE) model several output parameters are discussed. The results show that CFRP wrapping is an effective strengthening technique to increase the axial dynamic load bearing capacity by increasing the stiffness of the steel tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of constructivism and the ongoing drive for convergence, both of career theories and between theory and practice, have been key drivers in the career development literature for two decades (Patton, International Handbook of Career Guidance, 2008). Both contextual action theory and systems theory are derived from the root metaphor of contextualism, which has been proffered as a worldview to assist scientists and practitioners in organizing day-to-day experiential data. This chapter identifies the theoretical contributions of the Systems Theory Framework (STF) (Patton and McMahon, Career development and systems theory: A new development, 1999, Career psychology in South Africa, 2006) and Contextual Action Theory (Young and Valach, The future of career, 2000, Journal of Vocational Behavior 64:499–514, 2004; Young et al., Career choice and development, 1996, Career choice and development, 2002), each of which has advanced thinking in theory integration and in the integration between theory and practice in the career development and counseling field. Young et al. (Career development in childhood and adolescence, 2007) noted the connections between the Patton and McMahon systems theory approach and the contextual action theory approach and these connections will be highlighted in terms of the application of these theoretical developments to practice in career counseling, with a particular focus on the commonalities between the two approaches and what counselors can learn from each of them. In particular, this chapter will discuss common conceptual understandings and practice dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joint moments and joint powers are widely used to determine the effects of rehabilitation programs and prosthetic components (e.g., alignments). A complementary analysis of the 3D angle between joint moment and joint angular velocity has been proposed to assess whether the joints are predominantly driven or stabilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Preventing risk factor exposure is vital to reduce the high burden from lung cancer. The leading risk factor for developing lung cancer is tobacco smoking. In Australia, despite apparent success in reducing smoking prevalence, there is limited information on small area patterns and small area temporal trends. We sought to estimate spatio-temporal patterns for lung cancer risk factors using routinely collected population-based cancer data. Methods: The analysis used a Bayesian shared component spatio-temporal model, with male and female lung cancer included separately. The shared component reflected exposure to lung cancer risk factors, and was modelled over 477 statistical local areas (SLAs) and 15 years in Queensland, Australia. Analyses were also run adjusting for area-level socioeconomic disadvantage, Indigenous population composition, or remoteness. Results: Strong spatial patterns were observed in the underlying risk factor exposure for both males (median Relative Risk (RR) across SLAs compared to the Queensland average ranged from 0.48-2.00) and females (median RR range across SLAs 0.53-1.80), with high exposure observed in many remote areas. Strong temporal trends were also observed. Males showed a decrease in the underlying risk across time, while females showed an increase followed by a decrease in the final two years. These patterns were largely consistent across each SLA. The high underlying risk estimates observed among disadvantaged, remote and indigenous areas decreased after adjustment, particularly among females. Conclusion: The modelled underlying exposure appeared to reflect previous smoking prevalence, with a lag period of around 30 years, consistent with the time taken to develop lung cancer. The consistent temporal trends in lung cancer risk factors across small areas support the hypothesis that past interventions have been equally effective across the state. However, this also means that spatial inequalities have remained unaddressed, highlighting the potential for future interventions, particularly among remote areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Joint ventures are formed and dissolved regularly in the mining industry. What impact do such changes have on the viability of mineral exploration projects? The Australian Centre for Entrepreneurship Research (ACE) has taken 9 years' worth of data (2002-2011) on 1,025 joint ventures in the Australasian mining industry and studied trends in fomentation, dissolution, and reconfiguration and how they impact project outcomes. This research is generously sponsored by the Queensland Exploration Council (QEC) and the Australian Research Council (ARC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To test the effectiveness of static and dynamic orthoses using them as an exclusive treatment for proximal interphalangeal (PIP) joint flexion contracture compared with other hand therapy conservative treatments described in the literature. Methods 60 patients who used orthoses were compared with a control group that received other hand therapy treatments. Clinical assessments were measured before the experiment and 3 months after and included active PIP joint extension and function. Results A significant improvement in the extension active range of motion at the PIP joint in the second measurement was found in both groups, but it was significantly greater in the experimental group. Improvement in function (Disabilities of the Arm, Shoulder, and Hand score) between the first and second assessment was similar in the control and experimental groups. Conclusions Using night progressive static and daily dynamic orthoses as an exclusive treatment during the proliferative phase led to significant improvements in the PIP joint active extension, but the improvement did not correlate with increased function as perceived by the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disconnector switch operation in GIS generates VFT voltages in the system. It is important, for insulation co-ordination purposes, to obtain accurate VFT V-t data for typical gap geometries found in GIS. This paper presents experimentally obtained VFT V-t data for a 180/1 lOmm co-axial gap. The VFT has a time to first peak of 35 ns and a oscillation frequency of 13,6 MHz. Due to the location of the voltage divider in a compartment adjacent to the gap, a correction factor of 1.1 is used to relate the measured breakdown voltage to that in the gap. Positive polarity VFT V-t data is presented for 1, 2, 3 and 4 bar absolute and negative polarity VFT data for 3 and 4 bar absolute. Two methods of generating the VFT's are used. The first is to power up the test transformer at power frequency. The second is to generate a switching impulse by discharging a capacitor into the primary of the test transformer.